Skip to main content
Log in

Host–guest association of coumarin 343 with β-cyclodextrin and C-hexylpyrogallol[4]arene: opposite fluorescent behavior and prototropic characteristics

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

We report here the stoichiometry and the binding strength of coumarin 343 (C343) with β-cyclodextrin (β-CD) and with C-hexylpyrogallol[4]arene (C-HPA) using absorption, steady state fluorescence, time-resolved fluorescence and 2D ROESY NMR spectroscopic techniques. The effect of pH on C343 in water and in the presence of β-CD or C-HPA is studied. The ground state and the excited state pKa values for the neutral-monocation equilibrium of C343 are reported. The opposite fluorescence behavior of C343 in the presence of β-CD and in C-HPA is discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Webb, W.R., Corrie, J.E.T.: Fluorescent coumarin-labelled nucleotides to measure ADP release from actomyosin. Biophys. J. 81, 1562–1569 (2001)

    Article  CAS  Google Scholar 

  2. Katritzky, A.R., Cusido, J., Narindoshvili, T.: Monsaccharide-based water-soluble fluorescent tags. Bioconjug. Chem. 19, 1471–1475 (2008)

    Article  CAS  Google Scholar 

  3. Dillingham, M.S., Tibbles, K.L., Hunter, J.L., Bell, J.C., Kowalczykowski, S.C., Webb, M.R.: Fluorescent single-stranded DNA binding protein as a probe for sensitive, real-time assays of helicase activity. Biophys. J. 95, 3330–3339 (2008)

    Article  CAS  Google Scholar 

  4. Brun, M.P., Bischoff, L., Garbay, C.: A very short route to enantiomerically pure coumarin-bearing fluorescent amino acids. Angew. Chim. Int. Ed. 43, 3432–3436 (2004)

    Article  CAS  Google Scholar 

  5. Komatsu, K., Urano, Y., Kojima, H., Nagano, T.: Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J. Am. Chem. Soc. 129, 13447–13454 (2007)

    Article  CAS  Google Scholar 

  6. Frederich, N., Nysten, B., Muls, B., Hofkens, J., Jiwan, J.L.H., Jonas, A.M.: Nano-patterned layers of a grafted coumarinic chromophore. Photochem. Photobiol. Sci. 7, 460–466 (2008)

    Article  CAS  Google Scholar 

  7. Wu, W., Cao, Z., Zhao, Y.: Theoretical studies on absorption, emission, and resonance raman spectra of coumarin 343 isomers. J. Chem. Phys. 136, 114305-1-9 (2012)

    Google Scholar 

  8. Wachtveitl, J., Huber, R., Spörlein, S., Moser, J.E., Grätzel, M.: Ultrafast photoinduced electron transfer in coumarin 343 sensitized TiO2-colloidal solution. Int. J. Photoenergy 1, 153–155 (1999)

    Article  CAS  Google Scholar 

  9. Gilat, S.L., Adronov, A., Fre′chet, J.M.J.: Light harvesting and energy transfer in novel convergently constructed dendrimers. Angew. Chem. Int. Ed. 38, 1422–1427 (1999)

    Article  CAS  Google Scholar 

  10. Gilat, S.L., Adronov, A., Fre′chet, J.M.J.: Modular approach to the accelerated convergent growth of laser dye-labeled poly (Aryl ether) dendrimers using a novel hypermonomer. J. Org. Chem. 64, 7474–7484 (1999)

    Article  CAS  Google Scholar 

  11. Beer, P.D., Gale, P.A., Smith, D.K.: Supramolecular Chemistry, Oxford Chemistry Primers, vol. 74, pp. 1–30. Oxford University Press, Oxford (2003)

    Google Scholar 

  12. Steed, J.W., Atwood, J.L.: Supramolecular Chemistry, pp. 2–33. Wiley, Chichester (2000)

    Google Scholar 

  13. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  14. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Proc. Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  15. Mac Gillivvay, L.R., Atwood, J.L.: A chiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 389, 469–472 (1997)

    Article  Google Scholar 

  16. Shivanyuk, A., Rebek, J.: Reversible encapsulation by self assembling resorcinarene sub units. J. Proc. Natl. Acad. Sci. USA 98, 7662–7665 (2001)

    Article  CAS  Google Scholar 

  17. Mallick, A., Haldar, B., Chattopadhyay, N.: Encapsulation of norharmane in cyclodextrin: formation of 1:1 and 1:2 complexes. J. Photochem. Photobiol. B 78, 215–221 (2005)

    Article  CAS  Google Scholar 

  18. Enoch, I.V.M.V., Swaminathan, M.: β-Cyclodextrin inclusion complexes of 2-hydroxyfluorene and 2-hydroxy-9-fluorenone: differences in stoichiometry and excited state prototropic equilibrium. J. Fluoresc. 16, 501–510 (2006)

    Article  CAS  Google Scholar 

  19. Schazmann, B., Alhashimy, N., Diamond, D.J.: Chloride selective calix[4]arene optical sensor combining urea functionality with pyrene excimer transduction. J. Am. Chem. Soc. 128, 8607–8614 (2006)

    Article  CAS  Google Scholar 

  20. Liu, Y., Li, Z., Zhang, H.Y., Wang, H.: Colorimetric sensor and inverse fluorescent behavior of anions by calix[4]arene possessing imidazo[4,5-f]-1,10-phenanthroline groups and its Ru(II) complex Li. C. J. Supramol. Chem. 20, 419–426 (2008)

    Article  CAS  Google Scholar 

  21. Farcas, A., Jarrouxb, N., Farcas, A.M., Harabagiu, V., Guegan, P.: Synthesis and characterization of furosemide complex in β-cyclodextrin digest. J. Nanomat. Biostruct. 1, 55–60 (2006)

    Google Scholar 

  22. Zsila, F., Bikádi, Z., Fitos, I., Simonyi, M.: Probing protein binding sites by circular dichroism spectroscopy. Curr. Drug Discov. Technol. 1, 133–153 (2004)

    Article  CAS  Google Scholar 

  23. Enoch, I.V.M.V., Swaminathan, M.: Stoichiometrically different inclusion complexes of 2-aminofluorene and 2-amino-9-hydroxyfluorene in β-cyclodextrin: a spectrofluorimetric study. J. Fluoresc. 16, 697–704 (2006)

    Article  CAS  Google Scholar 

  24. Ates, K., Shapiro, S.A.: A critical test of the hammett acidity function canadian. J. Chem. 50, 581–583 (1972)

    Google Scholar 

  25. Cave, G.W.V., Antesberger, J., Barbour, L.J., McKinlay, R.M., Atwood, J.L.: Inner core structure responds to communication between nanocapsule walls. Angew. Chem. Int. Ed. 43, 5263–5266 (2004)

    Article  CAS  Google Scholar 

  26. Borghetti, G.S., Lula, I.S., Sinisterra, R.D., Bassani, V.L.: Quercetin/beta-cyclodextrin solid complexes prepared in aqueous solution followed by spray-drying or by physical mixture. AAPS Pharm. Sci. Tech. (2009). doi:10.1208/s12249-009-9196-3

  27. Yáñez, C., Rosales, P.C., Castillo, J.P., Catalán, N., Undabeytia, T., Morillo, E.: Cyclodextrin inclusion complex to improve physicochemical properties of herbicide bentazon: exploring better formulations. PLoS ONE 7(8), e41072 (2012)

    Article  Google Scholar 

  28. Tintaru, A., Hillebrand, M., Thevand, A.: NMR study of the inclusion complexes of carboxy-phenoxathiine derivatives with β-cyclodextrin. J. Incl. Phenom. Macrcycl. Chem. 45, 35–40 (2003)

    Article  CAS  Google Scholar 

  29. Nigam, S., Durocher, G.: Spectral and photophysical studies of inclusion complexes of some neutral 3 h-indoles and their cations and anions with β-cyclodextrin. J. Phys. Chem. 100, 7135–7142 (1996)

    Article  CAS  Google Scholar 

  30. Whetstine, J.L., Kline, K.K., Fowler, D.A., Ragan, C.M., Barnes, C.L., Atwood, J.L., Tucker, S.A.: Spectroscopic investigation of pyrolgallol[6]arene nanocapsules utilizing encapsulated fluorescent guests. New J. Chem. 34, 2587–2591 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Science and Technology, Government of India, for the financial support though the project SR/FT/CS-062/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel V. Muthu Vijayan Enoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekaran, S., Muthu Vijayan Enoch, I. Host–guest association of coumarin 343 with β-cyclodextrin and C-hexylpyrogallol[4]arene: opposite fluorescent behavior and prototropic characteristics. J Incl Phenom Macrocycl Chem 80, 225–234 (2014). https://doi.org/10.1007/s10847-014-0380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0380-z

Keywords

Navigation