Skip to main content
Log in

Inclusion complexes of sulphanilamide drugs and β-cyclodextrin: a theoretical approach

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

PM3 theoretical methodology was used to access and compare the relative stability of inclusion complexes formed by sulphadiazene, sulphisomidine, sulphamethazine and sulphanilamide with β-cyclodextrin (β-CD). The study predicted that (i) the heterocyclic ring is encapsulated in the hydrophobic part and aniline ring is present in the hydrophilic part of the β-CD cavity and (ii) intermolecular hydrogen bonds were formed between host and guest molecules. The negative free energy and enthalpy changes indicated that all the four inclusion complexation processes were spontaneous and enthalpy driven process. HOMO and LUMO orbital investigation confirmed that the stability increased in the inclusion complexes and also proved no significant change in the electronic structure of the guest and host molecules after complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abou-Zied, O.K., Al-Hinai, A.T.: Caging effects on the ground and excited states of 2,2′-bipyridine-3,3′-diol embedded in cyclodextrins. J. Phys. Chem. 110, 7835–7840 (2006)

    Article  CAS  Google Scholar 

  2. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  3. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998)

    Article  CAS  Google Scholar 

  4. Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98, 1829–1874 (1998)

    Article  CAS  Google Scholar 

  5. Sankaranaryanan, R.K., Siva, S., Antony Muthu Prabu, A., Rajendiran, N.: Dual fluorescence of dothiepin, doxepin drugs—effect of solvents and β-cyclodextrin. J. Mol. Liq. 161, 107–114 (2011)

    Article  Google Scholar 

  6. Venkatesh, G., Antony Muthu Prabu, A., Rajendiran, N.: Azonium-ammonium tautomerism and inclusion complexation of 1-(2,4-diamino phenylazo) naphthalene and 4-aminoazobenzene. J. Fluoresc. 21, 1485–1497 (2011)

    Article  CAS  Google Scholar 

  7. Botsi, A., Yannakopoulou, K., Hadjoudis, E., Waite, J.: AM1 calculations on inclusion complexes of cyclomaltoheptaose (β-cyclodextrin) with 1,7-dioxaspiro[5.5]undecane and nonanal, and comparison with experimental results. Carbohydr. Res. 283, 1–16 (1996)

    Article  CAS  Google Scholar 

  8. Boukamel, N.B., Krallafa, A., Bormann, D., Caron, L., Canipelle, M., Tilloy, S., Monflier, E.: Theoretical investigations of the inclusion processes of (4-tert-butylphenyl) (3-sulfonatophenyl) (phenyl) phosphine in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 42, 269–274 (2002)

    Article  CAS  Google Scholar 

  9. Yang, E.C., Zhao, X.J., Hua, F., Hao, J.K.: Semi-empirical PM3 study upon the complexation of β-cyclodextrin with 4,4′-benzidine and o-tolidine. J. Mol. Struct. Theochem. 712, 75–79 (2004)

    Article  CAS  Google Scholar 

  10. Attoui Yahia, O., Khatmi, D.E.: Theoretical study of the inclusion processes of venlafaxine with β-cyclodextrin. J. Mol. Struct. Theochem. 912, 38–43 (2009)

    Article  CAS  Google Scholar 

  11. Barbiric, D.J., Castro, E.A., de Rossi, R.H.: A molecular mechanics study of 1:1 complexes between azobenzene derivatives and β-cyclodextrin. J. Mol. Struct. Theochem. 532, 171–181 (2000)

    Article  CAS  Google Scholar 

  12. Gaspar de Araujo, M.V., Barbosa Vieira, E.K., Silva Lazaro, G.: Inclusion complexes of pyrimethamine in 2-hydroxypropyl-β-cyclodextrin: characterization, phase solubility and molecular modelling. Bioorg. Med. Chem. 15, 5752–5759 (2007)

    Article  CAS  Google Scholar 

  13. Antony Muthu Prabu, A., Venkatesh, G., Rajendiran, N.: Azo-hydrazo tautomerism and inclusion complexation of 1-phenylazo-2-naphthols with various solvents and β-cyclodextrin. J. Fluoresc. 20, 961–972 (2011)

    Article  Google Scholar 

  14. Yan, C., Li, X., Xiu, Z., Hao, C.: A quantum-mechanical study on the complexation of β-cyclodextrin with quercetin. J. Mol. Struct. Theochem. 764, 95–100 (2006)

    Article  CAS  Google Scholar 

  15. Briquet, L., Staelers, N., Leherte, L., Vercautern, D.P.: Structural, energetic, and dynamical properties of rotaxanes constituted of α-cyclodextrins and an azobenzene chain. J. Mol. Graph. Model. 26, 104–116 (2007)

    Article  CAS  Google Scholar 

  16. Premakumari, J.: Allan Gnana Roy, G., Antony Muthu Prabu, A., Venkatesh, G., Rajendiran, N.: Spectral characteristics of sulphadiazine, sulphisomidine: effect of solvents, pH and β-cyclodextrin. Phys. Chem. Liq. 49, 108–132 (2011)

    Article  CAS  Google Scholar 

  17. Antony Muthu Prabhu, A., Venkatesh, G., Rajendiran, N.: Spectral characteristics of sulfa drugs: effect of solvents, pH and β-cyclodextrin. J. Solution Chem. 39, 1061–1086 (2010)

    Article  Google Scholar 

  18. Kuemmerer, K.: Pharmaceuticals in the environment. Sources, fate, effects, and risks, 2nd edn. Springer, Berlin (2004)

    Book  Google Scholar 

  19. Campagnolo, E.R., Johnson, K.R., Karpati, A., Rubin, C.S., Kolpin, D.W., Meyer, M.T., Esteban, J.E., Currier, R.W., Smith, K., Thu, K.M., McGeehin, M.: Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci. Total Environ. 299, 89–95 (2002)

    Article  CAS  Google Scholar 

  20. Thomas, P., Jochen, T., Regine, F.: Structural characterization of sulfadiazine metabolites using h/d exchange combined with various MS/MS experiments. J. Am. Soc. Mass Spectrom. 16, 1687–1694 (2005)

    Article  Google Scholar 

  21. Kargosha, K., Ahmadi, S.H.: Simultaneous determination of sulphamethoxazole and trimethoprim in co-trimoxazole tablets by first-derivative FTIR spectrometry. Anal. Lett. 32, 1613–1626 (1999)

    Article  CAS  Google Scholar 

  22. Maurya, R.C., Patel, P.: Synthesis, magnetic and special studies of some novel metal complexes of Cu(II), Ni(II), Co(II), Zn[II), Nd(III), Th(IV), and UO2(VI) with schiff bases derived from sulfa drugs, viz., sulfanilamide/sulfamerazine and o-vanillin. Spectrosc. Lett. 32, 213–236 (1999)

    Article  CAS  Google Scholar 

  23. El-Baradie, K.Y., Gaber, M.: Synthesis, spectral, thermal, and electrical conductivity studies of cobalt(II) and copper(II) sulfadiazine complexes. Chem. Pap. 57, 317–321 (2003)

    CAS  Google Scholar 

  24. Steiner, T., Koellner, G.: Crystalline.beta-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. J. Am. Chem. Soc. 116, 5122–5128 (1994)

    Article  CAS  Google Scholar 

  25. Liu, L., Guo, Q.X.: Use of quantum chemical methods to study cyclodextrin chemistry. J. Incl. Phenom. Macrocycl. Chem. 50, 95–103 (2004)

    CAS  Google Scholar 

  26. Rafati, A.A., Hashemianzadeh, S.M., Nojini, Z.B., Safarpour, M.A.: Theoretical study of the inclusion complexes of α and β-cyclodextrins with decyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB). J. Mol. Liq. 135, 153–157 (2007)

    Article  CAS  Google Scholar 

  27. Castro, R., Berardi, M.J., Cordova, E., de Olza, M.O., Kaifer, A.E., EvanseckN, J.D.: Unexpected roles of guest polarizability and maximum hardness, and of host solvation in supramolecular inclusion complexes: a dual theoretical and experimental study. J. Am. Chem. Soc. 118, 10257–10268 (1996)

    Article  CAS  Google Scholar 

  28. Chadhuri, S., Charaborty, S., Sengupta, P.K.: Encapsulation of serotonin in β-cyclodextrin nano-cavities: fluorescence spectroscopic and molecular modelling studies. J. Mol. Struct. 975, 160–165 (2010)

    Article  Google Scholar 

  29. Liu, L., Sheng Song, K.E., Song Li, X., Xiang Guo, Q.: Charge transfer interaction: a driving force for cyclodextrin inclusion complexation. J. Incl. Phenom. Macrocycl. Chem. 40, 35–39 (2001)

    Article  CAS  Google Scholar 

  30. Karelson, M., Lobanov, V.S., Katrizky, R.: Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 96, 1027–1044 (1996)

    Article  CAS  Google Scholar 

  31. Morokuma, K.: Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity. Acc. Chem. Res. 10, 294–300 (1977)

    Article  CAS  Google Scholar 

  32. Anconi, P.A., Degado, L.S., Alves dos Reis, J.B., De Almeida, W.B.: Inclusion complexes of α-cyclodextrin and the cisplatin analogues oxaliplatin, carboplatin and nedaplatin: a theoretical approach. Chem. Phys. Lett. 515, 127–131 (2011)

    Article  CAS  Google Scholar 

  33. Hamdi, H., Abderrahim, R., Meganem, F.: Spectroscopic studies of inclusion complex of β-cyclodextrin and benzidine diammonium dipicrate. Spectrochim. Acta A 75A, 32–36 (2010)

    CAS  Google Scholar 

  34. Xing, S.K., Zhang, C., Ai, H.Q., Zhao, Q., Zhang, Q., Sun, D.Z.: Theoretical study of the interactions of β-cyclodextrin with 2′-hydroxyl-5′-methoxyacetophone and two of its isomers. J. Mol. Liq. 146, 15–22 (2009)

    Article  CAS  Google Scholar 

  35. Terekhova, I.V.: Comparative thermodynamic study on complex formation of native and hydroxypropylated cyclodextrins with benzoic acid. Thermochim. Acta 526, 11–21 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the CSIR [No. 01(2549)/12/EMR-II], UGC [No. F-351-98/2011 (SR)] and DST, New Delhi, India (No. SR/FTP/CS-14/2005). We thank Dr. V. K. Subramanian, Department of Chemistry, Annamalai University, for carrying out the grammatical corrections in this article. We also thank the reviewers of this article for their valuable suggestions. One of the authors G. Venkatesh is thankful to UGC for the award of RFSMS fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rajendiran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatesh, G., Sivasankar, T., Karthick, M. et al. Inclusion complexes of sulphanilamide drugs and β-cyclodextrin: a theoretical approach. J Incl Phenom Macrocycl Chem 77, 309–318 (2013). https://doi.org/10.1007/s10847-012-0248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0248-z

Keywords

Navigation