Skip to main content
Log in

Enrofloxacin inclusion complexes with cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Inclusion complexes using α-, β-, γ-, and hydroxypropyl-β-CD (HP-β-CD) were produced with the antibiotic enrofloxacin, with the aim of increasing its solubility by complexation. Phase solubility diagrams were obtained, to confirm the formation of inclusion complexes, and to determine the solubility enhancement and stability constant of each complex. Enrofloxacin inclusion in β-CD showed the highest value of the complex stability constant (35.56 mmol L−1), but the greatest increase in solubility was obtained using HP-β-CD reaching a 1258% increase over enrofloxacin solubility in the absence of CD. The order of highest enrofloxacin solubility achieved was: HP-β-CD > α-CD > γ-CD > β-CD. In addition, formation of complexes was confirmed by differential scanning calorimetry and thermogravimetry, applied to the complexes obtained by the kneading technique. The influence of citric acid, alone or as an adjunct of β-CD, on the solubility of enrofloxacin was also determined. A solution of 15 mmol L−1 citric acid dissolved 10 g L−1 of enrofloxacin, but a gradual increase in β-CD concentration in the presence of citric acid did not increase the degree of solubilization of enrofloxacin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baluja, S., Bhalodia, R., Bhatt, M., Vekariya, N., Gajera, R.: Solubility of enrofloxacin sodium in various solvents at various temperatures. J. Chem. Eng. Data 53, 2897–2899 (2008)

    Article  CAS  Google Scholar 

  2. Seedher, N., Agarwal, P.: Various solvent systems for solubility enhancement of enrofloxacin. Indian J. Pharm. Sci. 71, 82–87 (2009)

    Article  Google Scholar 

  3. Tiwari, G., Tiwari, R., Rai, A.K.: Cyclodextrins in delivery systems: applications. J. Pharm. Bioall. Sci. 2, 72–78 (2010)

    Article  CAS  Google Scholar 

  4. Grunenberg, A., Bothe, C., Keil, B.: Patent US 2011/0003829A1 (2011)

  5. Matioli, G., Zanin, G.M., de Moraes, F.F.: Influence of substrate and product concentrations on the production of cyclodextrins by CGTase of Bacillus firmus, strain no. 37. Appl. Biochem. Biotechnol. 98–100, 947–961 (2002)

    Article  Google Scholar 

  6. Del Vale, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  7. Moriwaki, C., Costa, G.L., Ferracini, C.N., de Moraes, F.F., Zanin, G.M., Pineda, E.A.G., Matioli, G.: Enhancement of solubility of albendazole by complexation with β-cyclodextrin. Braz. J. Chem. Eng. 25, 255–267 (2008)

    Article  CAS  Google Scholar 

  8. Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. A.A.P.S. Pharm. Sci. Tech. 6, E329–E357 (2005)

    Google Scholar 

  9. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  10. Zhang, L., Wang, M., Shen, Y., Ma, Y., Luo, J.: Improvement of steroid biotransformation with hydroxypropyl-β-cyclodextrin induced complexation. Appl. Biochem. Biotechnol. 159, 642–654 (2009)

    Article  CAS  Google Scholar 

  11. Higuchi, T., Connors, K.A.: Phase-solubility techniques. In: Reilley, C.N. (ed.) Advances in Analytical Chemistry and Instrumentation, vol. 4. Wiley Interscience, New York (1965)

  12. Hirose, K.: A practical guide for the determination of binding constants. J. Incl. Phenom. Macrocycl. Chem. 39, 193–209 (2001)

    Article  CAS  Google Scholar 

  13. Loftsson, T., Magnúsdóttir, A., Másson, M., Sigurjónsdóttir, J.F.: Self-association and cyclodextrin solubilization of drugs. J. Pharm. Sci. 91, 2307–2316 (2002)

    Article  CAS  Google Scholar 

  14. Loftsson, T., Hreinsdóttir, D., Másson, M.: Evaluation of cyclodextrin solubilization of drugs. I. J. Pharm. 302, 18–28 (2005)

    CAS  Google Scholar 

  15. Melo, N.F.S., Grillo, R., Moraes, C.M., Brito, C.L., Trossini, G.H.G., Menezes, C.M.S., Ferreira, E.I., Rosa, A.H., Fraceto, L.F.: Preparação e caracterização inicial de complexo de inclusão entre nitrofurazona e 2-hidroxipropil-β-ciclodextrina. Rev. Ciênc. Farm. Básica Apl. 28, 35–44 (2007)

    CAS  Google Scholar 

  16. Szejtli, J.: Cyclodextrin Technology. Kluwer, Academic Publishers, Dordrecht (1988)

    Google Scholar 

  17. Lizondo, M., Pons, M., Gallardo, M., Estelrich, J.: Physicochemical properties of enrofloxacin. J. Pharm. Biomed. Anal. 15, 1845–1849 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and Fundação Araucária for financial support, and Formil Química Ltda for the gift of enrofloxacin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiza P. V. Calsavara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calsavara, L.P.V., Zanin, G.M. & de Moraes, F.F. Enrofloxacin inclusion complexes with cyclodextrins. J Incl Phenom Macrocycl Chem 73, 219–224 (2012). https://doi.org/10.1007/s10847-011-0045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0045-0

Keywords

Navigation