Skip to main content
Log in

Application of cyclodextrins in environmental bioassays for soil

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Based on our former experience on contaminant solubilisation and mobilisation in the process of soil remediation we used cyclodextrins as additives in environmental bioassays, for improving solubility and bioavailability of the contaminant in soil and as a consequence sensitivity of the bioassay. In this article we introduce the findings on the application of RAMEB (randomly methylated β-cyclodextrin) for testing PCP (pentachlorophenol) in soil, in three bioassays: bacterial luminescence-inhibition test with Vibrio fischeri, protozoon growth inhibition test with Tetrahymena pyriformis, and Ames mutagenicity test. We applied RAMEB which has a high solubilising capacity on many typical soil contaminant and PCP, because contradictory results were published for its toxicity and mutagenicity. The RAMEB-aided Ames test, gave a sudden and expressed increase in the mutagenicity of PCP, however, Ames mutagenicity was negative without cyclodextrin (CD). Based on these results we tried to apply RAMEB for increasing sensitivity of other bioassays, such as acute toxicity tests with different test organisms. According to our results the effect of RAMEB on bioavailability and toxic effect depends not only on the K ow value (octanol–water partition coefficient) of the chemical substances, but also on the test organism, the water-content of the test-matrix and the applied concentration of RAMEB, as well as its ratio to PCP. We collected all the characteristics of the bioassays applied for PCP and some other contaminants and showed the measured effect data in comparison with each other. We found that in the complex system of soil and soil suspension, used in the bioassays, the interactions between soil solid, water and gaseous phases, as well as between the test organism and RAMEB result in K ow dependent partition of the contaminant between solid and water phases of soil, RAMEB, and the test organism. The conclusion is that RAMEB undoubtedly has an influence on the fate and behaviour of the contaminant in soil and soil suspensions, and the direction of the RAMEB-induced changes depends on the effective concentration of the RAMEB in the bioassay, the time of contact, the type of test organism, and the characteristics of the RAMEB–contaminant complex. In those cases, when RAMEB increased the effect of a contaminated environmental sample, this CD-induced increase can be considered as a “realistic worse case” situation, which can be very useful in risk assessment, resulting in a moderate overestimate in the value of environmental risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gruiz, K., Horváth, B., Molnár, M.: Environmental Toxicology (in Hungarian). Műegyetem Publishing Company, Budapest (2001)

    Google Scholar 

  2. Gruiz, K.: Biological tools for soil ecotoxicity evaluation: soil testing triad and the interactive ecotoxicity tests for contaminated soil.In: Soil remediation series no 6., Fabio Fava, Peitro Canepa, (Eds.) ISBN: 88-88214-33-X, pp. 45–70, INCA, Italy (2005)

  3. Reid, B.J., Jones, K.C., Semple, K.T.: Bioavailability of persistent organic pollutants in soils and sediments-, a perspective on mechanisms, consequences and assessment. Environ. Pollut. 108, 103–112 (2000)

    Article  CAS  Google Scholar 

  4. Kelsey, J.W., Kottler, B.D., Alexander, M.: Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ. Sci. Technol. 31(1), 214–217 (1997)

    Article  CAS  Google Scholar 

  5. Cuypers, C., Pancras, T., Grotenhuis, T., Rulkens, W.: The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46, 1235–1245 (2002)

    Article  CAS  Google Scholar 

  6. Doick, K.J., Dew, N.M., Semple, K.T.: Linking catabolism to cyclodextrin extractability: determination of the microbial availability of PAHs in soil. Environ. Sci. Technol. 39(22), 8858–8864 (2005)

    Article  CAS  Google Scholar 

  7. Allan, I.J., Semple, K.T., Hare, R., Reid, B.J.: Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ. Pollut. 144, 562–571 (2006)

    Article  CAS  Google Scholar 

  8. Fenyvesi, E., Molnár, M., Kánnai, P., Balogh, K., Illés, G., Gruiz, K.: Cyclodextrin extraction of soils modelling bioavailability of contaminants. In: Green 5 Conference Proceedings, Lithuania (2008)

  9. Reid, B.J., Semple, K.T., Macleod, C.J., Weitz, H.J., Paton, G.I.: Feasibility of using prokaryote biosensors to assess acute toxicity of polycyclic aromatic hydrocarbons. FEMS Microbiol. Lett. 169, 227–233 (1998)

    Article  CAS  Google Scholar 

  10. Hickman, Z.A., Reid, B.J.: Towards a more appropriate water based extraction for the assessment of organic contaminant availability. Environ. Pollut. 138, 299–306 (2005)

    Article  CAS  Google Scholar 

  11. Hartnik, T., Jensen, J., Hermens, J.L.M.: Non exhaustive-cyclodextrin extraction as a chemical tool to estimate bioavailability of hydrophobic pesticides for earthworms. Environ. Sci. Technol. 42(22), 8419–8425 (2008)

    Article  CAS  Google Scholar 

  12. Molnár, M., Fenyvesi, É., Gruiz, K., Illés, G., Nagy, Z., Hajdu, Cs., Kánnai P.: Laboratory testing of biodegradation in soil: a comparison of chemical and biological methods. In: Gruiz, K. Meggyes, T.(eds.) land contam. reclam., vol. 17 (3–4), pp. 497–510. EPP Publications Limited, London (2009)

  13. Szaniszlo, N., Fenyvesi, E., Balla, J.: Structure–stability study of cyclodextrin complexes with selected volatile hydrocarbon contaminants of soils. J. Incl. Phenom. Macrocycl. Chem. 53(3–4), 241–248 (2005)

    Article  CAS  Google Scholar 

  14. Fai, P.B., Grant, A., Reid, B.J.: Compatibility of hydroxypropyl-β-cyclodextrin with algal toxicity bioassays. Environ. Pollut. 157, 135–140 (2009)

    Article  CAS  Google Scholar 

  15. Molnár, M., Leitgib, L., Gruiz, K., Fenyvesi, É., Szaniszló, N., Szejtli, J., Fava, F.: Enhanced biodegradation of transformer oil in soils with cyclodextrin from the laboratory to the field. Biodegradation 16, 159–168 (2005)

    Article  Google Scholar 

  16. Hajdu, Cs., Gruiz, K., Fenyvesi, É.: Bioavailability- and bioaccessibility dependent mutagenicity of pentachlorophenol. land contam. reclam. 17, 3–4 (2009)

    Article  Google Scholar 

  17. Maron, D.M., Ames, B.N.: Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113, 173–215 (1983)

    CAS  Google Scholar 

  18. White, P.A., Claxton, L.D.: Mutagens in contaminated soil–a review. Mutat. Res. 567, 227–345 (2004)

    Article  CAS  Google Scholar 

  19. Leitgib, L., Kalman, J., Gruiz, K.: Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere 66, 428–434 (2007)

    Article  CAS  Google Scholar 

  20. Zimmermann, F.K., Von Borstel, R.C., Von Halle, E.S., Parry, J.M., Siebert, D., Zetterberg, G., Barale, R., Loprieno, N.: Testing of chemicals for genetic activiy with Saccharomyces cerevisiae: a report of the U. S. Environmental Protection Agency Gene-Tox. program. Mutat. Res. 133, 199–244 (1984)

    Google Scholar 

  21. Seiler, J.P.: Pentachlorophenol. Mutat. Res. 257(1), 27–47 (1991)

    CAS  Google Scholar 

  22. Gopalaswamy, U.V., Nair, C.K.K.: DNA binding and mutagenicity of lindane and its metabolites. Bull. Environ. Contam. Toxicol. 49(2), 300–305 (1992)

    Article  CAS  Google Scholar 

  23. Sekine, K., Watanabe, E., Nakamura, J., Takasuka, N., Kim, D.J., Asamoto, M., Krutovskikh, V., Baba-Toriyama, H., Ota, T., Moore, M.A., Masuda, M., Sugimoto, H., Nishino, H., Kakizoe, T., Tsuda, H.: Inhibition of azoxymethane-initiated colon tumor by bovine lactoferrin administration in F344 rats. J. Cancer Sci. 88(6), 523–526 (1997)

    Article  CAS  Google Scholar 

  24. Hajdu, Cs., Gruiz, K. and Fenyvesi, É.: Bioavailability, bioaccessibility of organic contaminants and partition between soil phases (in Hungarian), pp. 65–78. National Environmental Conference, Hungary (2006)

  25. Gruiz, K., Molnar, M., Feigl, V.: Measuring adverse effect of contaminated soil using interactive and dynamic test methods. land contam. reclam. 17(3–4), 443–460 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Hungarian R&D programs (MOKKA NKFP-3-00020/2005, CDFILTER TECH-08-A4/2-2008-016 and SOILUTIL. TECH-09-A4-2009-0129) and Anyos Jedlik National Research and Technology Programme (MOKKA NKFP-3-00020/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csilla Hajdu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajdu, C., Gruiz, K., Fenyvesi, É. et al. Application of cyclodextrins in environmental bioassays for soil. J Incl Phenom Macrocycl Chem 70, 307–313 (2011). https://doi.org/10.1007/s10847-010-9855-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9855-8

Keywords

Navigation