Skip to main content
Log in

Inclusion complex formation of α- and β-cyclodextrins with riboflavin and alloxazine in aqueous solution: thermodynamic study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Possibility of encapsulation of riboflavin and alloxazine by α- and β-cyclodextrins in aqueous solution was studied by 1H NMR and solubility methods. Thermodynamic parameters of 1:1 inclusion complex formation (K, ΔcG0, ΔcH0 and ΔcS0) were obtained and analyzed in terms of influence of reagent’s structure on complexation process. It was shown that α-cyclodextrin displays low binding affinity to riboflavin and alloxazine. On the contrary, β-cyclodextrin forms with riboflavin and alloxazine more stable inclusion complexes. Binding is accompanied by the negative enthalpy and entropy changes that are determined by predominance of van der Waals interactions and possible H-bonding. The presence of ribityl substituent in riboflavin molecule prevents the deep penetration of this compound into macrocyclic cavity. Proposed on the basis of 1H NMR data the partial insertion of the hydrophobic part of riboflavin and alloxazine molecules into the β-cyclodextrin cavity causes the enhancement of aqueous solubility of the encapsulated substances. In comparison with α-cyclodextrin, the solubilizing effect of β-cyclodextrin is more pronounced due to its higher binding affinity to alloxazine and riboflavin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Vos, P., Bučko, M., Gemeiner, P., et al.: Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30, 2559–2570 (2009)

    Article  Google Scholar 

  2. Champagne, C.P., Fustier, P.: Microencapsulation for the improved delivery of bioactive compounds into foods. Curr. Opin. Biotechnol. 18, 184–190 (2007)

    Article  CAS  Google Scholar 

  3. Branco, M.C., Schneider, J.P.: Self-assembling materials for therapeutic delivery. Acta Biomater. 5, 817–831 (2009)

    Article  CAS  Google Scholar 

  4. Sagar, G.H., Arunagirinathan, M.A., Bellare, J.R.: Self-assembled surfactant nano-structures important in drug delivery: a review. Indian J. Exp. Biol. 45, 133–159 (2007)

    CAS  Google Scholar 

  5. Goldberg, M., Langer, R., Jia, X.Q.: Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed. 18, 241–268 (2007)

    Article  CAS  Google Scholar 

  6. Szente, L., Szejtli, J.: Cyclodextrins as food ingredients. Trends Food Sci. Technol. 15, 137–142 (2004)

    Article  CAS  Google Scholar 

  7. Szeitli, J., Szente, L.: Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm. 61, 115–125 (2005)

    Article  Google Scholar 

  8. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  9. Vyas, A., Saraf, S., Saraf, S.: Cyclodextrins based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 62, 23–42 (2008)

    Article  CAS  Google Scholar 

  10. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  CAS  Google Scholar 

  11. Szejtli, J.: In: Davies, J.E.D., MacNicol, D.D., Vögtle, F., Attwood, J.L. (eds.) Comprehensive Supramolecular Chemistry: Cyclodextrins, vol. 3. Oxford, Elsevier (1996)

    Google Scholar 

  12. Massey, V.: The chemical and biological versatility of riboflavin. Biochem. Soc. Trans. 28, 283–296 (2000)

    Article  CAS  Google Scholar 

  13. Heelis, P.F.: The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 11, 15–39 (1982)

    Article  CAS  Google Scholar 

  14. Saleh, A.M.: Stability of riboflavin in solubilized systems. Pharmazie. 29, 474–478 (1974)

    CAS  Google Scholar 

  15. Smith, E.C., Metzler, D.E.: The photochemical degradation of riboflavin. J. Am. Chem. Soc. 85, 3285–3288 (1963)

    Article  CAS  Google Scholar 

  16. Chastain, J., McCormick, D.B.: In: Muller, F. (ed.) Chemistry and Biochemistry of Flavoenzymes, pp. 196–200. CRC Press, Boston (1991)

    Google Scholar 

  17. Sikorska, E., Khmelinskii, I.V., Williams, S.L., et al.: Spectroscopy and photophysics of 6,7-dimethyl-alloxazine: experimental and theoretical study. J. Mol. Struct. 697, 199–205 (2004)

    Article  CAS  Google Scholar 

  18. Szymusiak, H., Konarski, J., Koziol, J.: An INDO/S MO study of alloxazine and its monomethyl derivatives. J. Chem. Soc. Perkin Trans. 2, 229–236 (1990)

    Google Scholar 

  19. Komasa, J., Rychlewski, J., Koziol, J.: Electronic structure of alloxazine and its methyl derivatives. J. Mol. Struct. (Theochem). 170, 205–212 (1988)

    Article  Google Scholar 

  20. Habib, H.J., Asker, A.F.: Photostabilization of riboflavin by incorporation into liposomes. J. Parent Sci. Technol. 45, 124–127 (1991)

    CAS  Google Scholar 

  21. Loukas, Y.L., Jayasekera, P., Gregoriadis, G.: Characterization and photoprotection studies of a model γ-cyclodextrin-included photolabile drug entrapped in liposomes incorporating light absorbers. J. Phys. Chem. 99, 11035–11040 (1995)

    Article  CAS  Google Scholar 

  22. Loukas, Y.L.: A Plackett–Burman screening design directs the efficient formulation of multicomponent DRV liposomes. J. Pharm. Biomed. Anal. 26, 255–263 (2001)

    Article  CAS  Google Scholar 

  23. Wang, X.-M., Chen, H.-Y.: A spectroelectrochemical study of the interaction of riboflavin with β-cyclodextrin. Spectrochim. Acta A 51, 599–605 (1996)

    Google Scholar 

  24. Wang, X.-M., Yan, M.-D., Zhu, J., Chen, H.-Y.: The surface-enhanced Raman spectroelectrochemical study on the interaction between β-cyclodextrin and the electrochemically generated radical intermediate of flavin. J. Electroanal. Chem. 451, 187–192 (1998)

    Article  CAS  Google Scholar 

  25. Roy, D.K., Deb, N., Ghosh, B.C., Mukherjee, A.K.: Inclusion of riboflavin in β-cyclodextrin: a fluorimetric and absorption spectrometric study. Spectrochim. Acta A 73, 201–204 (2009)

    Article  Google Scholar 

  26. Loukas, Y.L., Vraka, V., Gregoriadis, G.: Use of nonlinear least-squares model for the kinetic determination of the stability constant of cyclodextrin inclusion complexes. Int. J. Pharm. 144, 225–231 (1996)

    Article  CAS  Google Scholar 

  27. Loukas, Y.L.: Multiple complex formation of unstable compounds with cyclodextrins: efficient determination and evaluation of the binding constant with improved kinetic studies. Analyst 122, 377–381 (1997)

    Article  CAS  Google Scholar 

  28. Loukas, Y.L.: Multiple complex formation of fluorescent compounds with cyclodextrins: efficient determination and evaluation of the binding constant with improved fluorometric studies. J. Phys. Chem. B 101, 4863–4866 (1997)

    Article  CAS  Google Scholar 

  29. Job, P.: Ann. Chim. 9, 113–203 (1928)

    CAS  Google Scholar 

  30. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  31. Saenger, W., Jacob, J., Gessler, K., et al.: Structures of the common cyclodextrins and their larger analogues—beyond the doughnut. Chem. Rev. 98, 1787–1802 (1998)

    Article  CAS  Google Scholar 

  32. Blyshak, L.A., Warner, I.M., Patonay, G.: Evidence for non-inclusional association between α-cyclodextrin and polynuclear aromatic hydrocarbons. Anal. Chim. Acta 232, 239–243 (1990)

    Article  CAS  Google Scholar 

  33. Terekhova, I.V., Kumeev, R.S., Alper, G.A.: Inclusion complex formation of α- and β-cyclodextrins with aminobenzoic acids in aqueous solution studied by 1H NMR. J. Incl. Phenom. Macrocycl. Chem. 59, 301–306 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grant №09-03-97563). We are grateful to E. Gorbachev for help with calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Terekhova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terekhova, I.V., Tikhova, M.N., Volkova, T.V. et al. Inclusion complex formation of α- and β-cyclodextrins with riboflavin and alloxazine in aqueous solution: thermodynamic study. J Incl Phenom Macrocycl Chem 69, 167–172 (2011). https://doi.org/10.1007/s10847-010-9827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9827-z

Keywords

Navigation