Skip to main content
Log in

Effect of self-aggregation of γ-cyclodextrin on drug solubilization

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the physicochemical properties of drug-saturated aqueous cyclodextrin (CD) solutions. Phase solubility profiles of different drugs were determined in aqueous solutions containing γ-cyclodextrin (γCD) and/or hydroxypropyl-γ-cyclodextrin (HPγCD) in absence or presence of water-soluble polymers. 1H-NMR and turbidity analysis were performed as well as permeation studies. Phase solubility diagrams showed that the observed γCD content (1–20% w/v) was only slightly different from the theoretical values for aqueous solutions that had been saturated with indomethacin, diclofenac sodium or amphotericin B, all displayed A-type profiles, while it was less than the theoretical value in solutions that had been saturated with corticosteroids (hydrocortisone and dexamethasone) that displayed BS-type profiles. In the latter case self-assemble of drug/CD complexes decreased the overall CD solubility. Water-soluble polymers enhanced aqueous solubility of the drugs tested by stabilizing the drug/CD complexes, i.e. enhancing their stability constants, without affecting the observed aqueous γCD solubility. When the drug solubility leveled off (the BS-type profiles) the amount of dissolved γCD increased and approached the theoretical values. Hydrocortisone formed partial inclusion complex with γCD and HPγCD and no non-inclusion or aggregates could be detected in diluted solutions by 1H-NMR. Both permeation and turbidity studies showed that formation of dexamethasone/γCD complex promoted CD aggregation. All these observations indicate that CD aggregate formations play a role in CD solubilization of lipophilic and poorly water-soluble drugs and that the water-soluble polymers enhance the complexation efficiency of γCD and HPγCD by stabilizing the self-assembled drug/CD nanoparticles and promote non-inclusion complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins 1. Drug solubilization and stabilization. J. Pharm. Sci. 85(10), 1017–1025 (1996)

    Article  CAS  Google Scholar 

  2. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins 2. In vivo drug delivery. J. Pharm. Sci. 85(11), 1142–1169 (1996)

    Article  CAS  Google Scholar 

  3. Bonini, M., Rossi, S., Karlsson, G., Almgren, M., Lo Nostro, P., Baglioni, P.: Self-assembly of β-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering. Langmuir 22(4), 1478–1484 (2006)

    Article  CAS  Google Scholar 

  4. Messner, M., Kurkov, S.V., Jansook, P., Loftsson, T.: Self-assembled cyclodextrin aggregates and nanoparticles. Int J Pharm 387, 199–208 (2010)

    Article  CAS  Google Scholar 

  5. Szente, L., Szejtli, J., Kis, G.L.: Spontaneous opalescence of aqueous γ-cyclodextrin solutions: complex formation or self-aggregation? J. Pharm. Sci. 87(6), 778–781 (1998)

    Article  CAS  Google Scholar 

  6. He, Y.F., Fu, P., Shen, X.H., Gao, H.C.: Cyclodextrin-based aggregates and characterization by microscopy. Micron 39(5), 495–516 (2008)

    Article  CAS  Google Scholar 

  7. Gonzalez-Gaitano, G., Rodriguez, P., Isasi, J.R., Fuentes, M., Tardajos, G., Sanchez, M.: The aggregation of cyclodextrins as studied by photon correlation spectroscopy. J Inc Phenom Macrocycl Chem 44(1–4), 101–105 (2002)

    Article  CAS  Google Scholar 

  8. Bikadi, Z., Kurdi, R., Balogh, S., Szeman, J., Hazai, E.: Aggregation of cyclodextrins as an important factor to determine their complexation behavior. Chem Biodivers 3(11), 1266–1278 (2006)

    Article  CAS  Google Scholar 

  9. Pistolis, G., Malliaris, A.: Nanotube formation between cyclodextrins and 1,6-diphenyl-1,3,5-hexatriene. J. Phys. Chem. 100(38), 15562–15568 (1996)

    Article  CAS  Google Scholar 

  10. Witte, F., Hoffmann, H.: Aggregation behavior of hydrophobically modified β-cyclodextrins in aqueous solution. J Incl Phenom Mol Recognit Chem 25(1–3), 25–28 (1996)

    Article  CAS  Google Scholar 

  11. Pistolis, G., Malliaris, A.: Size effect of alpha, omega-diphenylpolyenes on the formation of nanotubes with γ-cyclodextrin. J Phys Chem B 102(7), 1095–1101 (1998)

    Article  CAS  Google Scholar 

  12. Zhao, Y.L., Yu, L.: Self-assembly behavior of phenyl modified β-cyclodextrins. Sci China Ser B 49(3), 230–237 (2006)

    Article  CAS  Google Scholar 

  13. Zhao, Y.L., Liu, Y.: Self-assembly behavior of inclusion complex formed by β-cyclodextrin with α-aminopyridine. Sci China Ser B 47(3), 200–205 (2004)

    Article  CAS  Google Scholar 

  14. Rodriguez-Perez, A.I., Rodriguez-Tenreiro, C., Alvarez-Lorenzo, C., Concheiro, A., Torres-Labandeira, J.J.: Drug solubilization and delivery from cyclodextrin-pluronic aggregates. J Nanosci Nanotechnol 6(9–10), 3179–3186 (2006)

    Article  CAS  Google Scholar 

  15. Zeng, P.Y., Zhang, G.F., Rao, A., Bowles, W., Wiedmann, T.S.: Concentration dependent aggregation properties of chlorhexidine salts. Int J Pharm 367(1–2), 73–78 (2009)

    Article  CAS  Google Scholar 

  16. Duan, M.S., Zhao, N., Ossurardóttir, I.B., Thorsteinsson, T., Loftsson, T.: Cyclodextrin solubilization of the antibacterial agents triclosan and triclocarban: formation of aggregates and higher-order complexes. Int J Pharm 297(1–2), 213–222 (2005)

    CAS  Google Scholar 

  17. Roos, C., Buss, V.: Evidence for the cyclodextrin mediated aggregation of cyanine dyes into oligomers. J Incl Phenom Mol Recognit Chem 27(1), 49–56 (1997)

    Article  CAS  Google Scholar 

  18. Khan, M.S.: Aggregate formation in poly(ethylene oxide) solutions. J. Appl. Polym. Sci. 102(3), 2578–2583 (2006)

    Article  CAS  Google Scholar 

  19. Rossi, S., Bonini, M., Lo Nostro, P., Baglioni, P.: Self-assembly of β-cyclodextrin in water. 2. Electron spin resonance. Langmuir 23(22), 10959–10967 (2007)

    Article  CAS  Google Scholar 

  20. Jansook, P., Kurkov, S.V., Loftsson, T.: Cyclodextrins as solubilizers: formation of complex aggregates. J. Pharm. Sci. 99(2), 719–729 (2010)

    CAS  Google Scholar 

  21. Loftsson, T., Hreinsdóttir, D., Másson, M.: Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302(1–2), 18–28 (2005)

    Article  CAS  Google Scholar 

  22. Jarho, P., Pate, D.W., Brenneisen, R., Jarvinen, T.: Hydroxypropyl-β-cyclodextrin and its combination with hydroxypropyl-methylcellulose increases aqueous solubility of Δ(9)-tetrahydrocannabinol. Life Sci 63(26), Pl381–Pl384 (1998)

    Article  CAS  Google Scholar 

  23. Kristinsson, J.K., Fridriksdóttir, H., Thorisdóttir, S., Sigurdardóttir, A.M., Stefánsson, E., Loftsson, T.: Dexamethasone-cyclodextrin-polymer co-complexes in aqueous eye drops—aqueous humor pharmacokinetics in humans. Invest Ophthalmol Vis Sci 37(6), 1199–1203 (1996)

    CAS  Google Scholar 

  24. Loftsson, T., Frioriksdóttir, H.: The effect of water-soluble polymers on the aqueous solubility and complexing abilities of β-cyclodextrin. Int J Pharm 163(1–2), 115–121 (1998)

    Article  CAS  Google Scholar 

  25. Loftsson, T., Jarvinen, T.: Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliv. Rev. 36(1), 59–79 (1999)

    Article  Google Scholar 

  26. Mura, P., Faucci, M.T., Bettinetti, G.P.: The influence of polyvinylpyrrolidone on naproxen complexation with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci 13(2), 187–194 (2001)

    Article  CAS  Google Scholar 

  27. Valero, M., Tejedor, J., Rodriguez, L.J.: Encapsulation of nabumetone by means of -drug: (β-cyclodextrin)2: polyvinylpyrrolidone ternary complex formation. J Lumin 126(2), 297–302 (2007)

    Article  CAS  Google Scholar 

  28. Jansook, P., Loftsson, T.: CDs as solubilizers: effects of excipients and competing drugs. Int J Pharm 379(1), 32–40 (2009)

    Article  CAS  Google Scholar 

  29. Forgo, P., Göndös, G.: A study of β-cyclodextrin inclusion complexes with progesterone and hydrocortisone using rotating frame Overhauser spectroscopy. Monatsh Chem 133, 101–106 (2002)

    Article  CAS  Google Scholar 

  30. Loftsson, T., Másson, M., Brewster, M.E.: Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 93(5), 1091–1099 (2004)

    Article  CAS  Google Scholar 

  31. Loftsson, T., Magnusdóttir, A., Másson, M., Sigurjonsdóttir, J.F.: Self-association and cyclodextrin solubilization of drugs. J. Pharm. Sci. 91(11), 2307–2316 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support provided by the Eimskip fund and the Icelandic Center For Research (RANNÍS) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsteinn Loftsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansook, P., Moya-Ortega, M.D. & Loftsson, T. Effect of self-aggregation of γ-cyclodextrin on drug solubilization. J Incl Phenom Macrocycl Chem 68, 229–236 (2010). https://doi.org/10.1007/s10847-010-9779-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9779-3

Keywords

Navigation