Skip to main content
Log in

Molecular brake systems controlled by light and heat

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Machines at a molecular level are in perpetual Brownian motion even at an ambient temperature. One of the representative issues of researches on molecular machines is a development of technology, which can control Brownian motion. This review presents our efforts to achieve the first rationally designed molecular brake systems of threading/dethreading motions, a shuttling motion, and a rocking motion that work reversibly and quantitatively in response to external stimuli without producing any chemical wastes. These molecular brake systems were constructed from a dumbbell shaped secondary ammonium axle and a ring component having photo and thermally reactive moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Scheme 6
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 8
Scheme 9
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Scheme 10
Fig. 18
Scheme 11

Similar content being viewed by others

References

  1. Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 2495–2496 (1967)

    Article  CAS  Google Scholar 

  2. Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)

    Article  CAS  Google Scholar 

  3. Pedersen, C.J.: The discovery of crown ethers (noble lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988)

    Article  Google Scholar 

  4. Pedersen, C.J.: The discovery of crown ethers. J. Incl. Phenom. 6, 337–350 (1988)

    Article  CAS  Google Scholar 

  5. Cram, D.J.: The design of molecular hosts, guests, and their complexes (nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988)

    Article  Google Scholar 

  6. Cram, D.J.: The design of molecular hosts, guests, and their complexes. J. Incl. Phenom. 6, 397–413 (1988)

    Article  CAS  Google Scholar 

  7. Lehn, J.M.: Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices. Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988)

    Article  Google Scholar 

  8. Lehn, J.M.: Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices. J. Incl. Phenom. 6, 351–396 (1988)

    Article  CAS  Google Scholar 

  9. Lehn, J.M.: Supramolecular Chemistry—Concepts and Perspectives. VCH, Weinheim (1995)

    Google Scholar 

  10. Izatt, R.M., Bradshaw, J.S., Nielsen, S.A., Lamb, J.D., Christensen, J.J.: Thermodynamic and kinetic data for cation macrocycle interaction. Chem. Rev. 85, 271–339 (1985)

    Article  CAS  Google Scholar 

  11. Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interaction with cations and anions. Chem. Rev. 91, 1721–2085 (1991)

    Article  CAS  Google Scholar 

  12. Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules. Chem. Rev. 95, 2529–2586 (1995)

    Article  CAS  Google Scholar 

  13. Izatt, R.M., Bradshaw, J.S., Pawlak, K., Bruening, R.L., Tarbet, B.J.: Thermodynamic and kinetic data for macrocycle interaction with neutral molecules. Chem. Rev. 92, 1261–1354 (1992)

    Article  CAS  Google Scholar 

  14. Zhang, X.X., Bradshaw, J.S., Izatt, R.M.: Enantiomeric recognition of amine compounds by chiral macrocyclic receptors. Chem. Rev. 97, 3313–3361 (1997)

    Article  CAS  Google Scholar 

  15. Kaneda, T., Hirose, K., Misumi, S.: Chiral azophenolic acerands: color indicator to judge the absolute configuration of chiral amines. J. Am. Chem. Soc. 111, 742–743 (1989)

    Article  CAS  Google Scholar 

  16. Naemura, K., Mizo-Oku, T., Kamada, K., Hirose, K., Tobe, Y., Sawada, M., Takai, Y.: Preparation of homochiral crown ether containing (S)-1-(1-adamantyl)ethane-1, 2-diol as a chiral subunit and its enantioselective complexation with an organic ammonium cation. Tetrahedron Asymmetr. 5, 1549–1558 (1994)

    Article  CAS  Google Scholar 

  17. Naemura, K., Asada, M., Hirose, K., Tobe, Y.: Preparation and enantiomer recognition of chiral azophenolic crown ethers having three chiral barriers on each of the homotopic faces. Tetrahedron Asymmetr. 6, 1873–1876 (1995)

    Article  CAS  Google Scholar 

  18. Naemura, K., Takeuchi, S., Sawada, M., Ueno, K., Hirose, K., Tobe, Y., Kaneda, T., Sakata, Y.: Synthesis of azophenolic crown ethers of CS symmetry incorporating cis-1-phenylcyclohexane-1, 2-diol residues as a steric barrier and diastereotopic face selectivity in complexation of amines by their diastereotopic faces. J. Chem. Soc. Perkin Trans. 1, 1429–1435 (1995)

    Article  Google Scholar 

  19. Naemura, K., Takeuchi, S., Hirose, K., Tobe, Y., Kaneda, T., Sakata, Y.: Preparation and enantiomer recognition behaviour of azophenolic crown ethers containing cis-cyclohexane-1, 2-diol as the chiral centre. J. Chem. Soc. Perkin Trans. 1, 213–219 (1995)

    Article  Google Scholar 

  20. Naemura, K., Fuji, J., Ogasahara, K., Hirose, K., Tobe, Y.: Temperature dependent reversal of enantiomer selectivity in the complexation of optically active phenolic crown ethers with chiral amines. Chem. Commun., 2749–2750 (1996)

  21. Naemura, K., Ueno, K., Takeuchi, S., Hirose, K., Tobe, Y., Kaneda, T., Sakata, Y.: Preparation and enantiomer recognition behaviour of azophenolic crown ethers containing cis-cyclohexane-1,2-diol as the chiral subunit and 2,4-dinitrophenylazophenol as the chromophore. J. Chem. Soc. Perkin Trans. 1, 383–388 (1996)

    Article  Google Scholar 

  22. Hirose, K., Fuji, J., Kamada, K., Tobe, Y., Naemura, K.: Temperature dependent inversion of enantiomer selectivity in the complexation of optically active azophenolic crown ethers containing alkyl substituents as chiral barriers with chiral amines. J. Chem. Soc. Perkin Trans. 2, 1649–1657 (1997)

    Google Scholar 

  23. Naemura, K., Nishikawa, Y., Fuji, J., Hirose, K., Tobe, Y.: Preparation of homochiral phenolic crown ethers containing para-substituted phenol moiety and chiral subunits derived from (S)-1-phenylethane-1, 2-diol: Their chiral recognition behaviour in complexation with neutral amines. Tetrahedron Asymmetr. 8, 873–882 (1997)

    Article  CAS  Google Scholar 

  24. Naemura, K., Ogasahara, K., Hirose, K., Tobe, Y.: Preparation of homochiral azophenolic crown ethers containing 1-phenylethane-1,2-diol and 2,4-dimethyl-3-oxapentane-1,5-diol as a chiral subunits: enantiomer recognition behaviour towards chiral 2-aminoethanol derivatives. Tetrahedron Asymmetr. 8, 19–22 (1997)

    Article  CAS  Google Scholar 

  25. Naemura, K., Wakebe, T., Hirose, K., Tobe, Y.: Preparation of homochiral phenolic crown ethers having chiral subunits derived from (1R,2S)-cis-1,2,3,4-tetrahydronaphthalene-1,2-diol: temperature-dependent enantiomer selectivity in complexation with neutral amines. Tetrahedron Asymmetr. 8, 2585–2595 (1997)

    Article  CAS  Google Scholar 

  26. Ogasahara, K., Hirose, K., Tobe, Y., Naemura, K.: Preparation of optically active azophenolic crown ethers containing 1-phenylethane-1,2-diol and 2,4-dimethyl-3-oxapentane-1,5-diol as a chiral subunits: temperature-dependent enantiomer selectivity in complexation with chiral amines. J. Chem. Soc. Perkin Trans. 1, 3227–3236 (1997)

    Article  Google Scholar 

  27. Naemura, K., Matsunaga, K., Fuji, J., Ogasahara, K., Nishikawa, Y., Hirose, K., Tobe, Y.: Temperature dependence of enantiomer selectivity in complexations of optically active phenolic crown ethers with chiral amines in solution. Anal. Sci. 14, 175–182 (1998)

    Article  CAS  Google Scholar 

  28. Naemura, K., Nishioka, K., Ogasahara, K., Nishikawa, Y., Hirose, K., Tobe, Y.: Preparation and temperature-dependent enantioselectivities of homochiral phenolic crown ethers having aryl chiral barriers: thermodynamic parameters for enantioselective complexation with chiral amines. Tetrahedron Asymmetr. 9, 563–574 (1998)

    Article  CAS  Google Scholar 

  29. Hirose, K., Ogasahara, K., Nishioka, K., Tobe, Y., Naemura, K.: Enantioselective complexation of phenolic crown ethers with chiral aminoethanol derivatives: effects of substituents of aromatic rings of hosts and guests on complexation. J. Chem. Soc. Perkin Trans. 2, 1984–1993 (2000)

    Google Scholar 

  30. Hirose, K., Fujiwara, A., Matsunaga, K., Aoki, N., Tobe, Y.: Chiral recognition of secondary amines by using chiral crown ether and podand. Tetrahedron Lett. 43, 8539–8542 (2002)

    Article  CAS  Google Scholar 

  31. Hirose, K., Fujiwara, A., Matsunaga, K., Aoki, N., Tobe, Y.: Preparation of phenolic chiral crown ethers and podands and their enantiomer recognition ability toward secondary amines. Tetrahedron Asymmetr. 14, 555–566 (2003)

    Article  CAS  Google Scholar 

  32. Wenzel, T.J., Freeman, B.E., Sek, D.C., Zopf, J.J., Nakamura, T., Jin, Y.Z., Hirose, K., Tobe, Y.: Chiral recognition in NMR spectroscopy using crown ethers and their ytterbium(iii) complexes. Anal. Bioanal. Chem. 378, 1536–1547 (2004)

    Article  CAS  Google Scholar 

  33. Hirose, K., Aksharanandana, P., Suzuki, M., Wada, K., Naemura, K., Tobe, Y.: Remarkable effect of subtle structural change of chiral pseudo-18-crown-6 on enantiomer-selectivity in complexation with chiral amino alcohols. Heterocycles 66, 405–431 (2005)

    Article  CAS  Google Scholar 

  34. Hirose, K., Goshima, Y., Wakebe, T., Tobe, Y., Naemura, K.: Supramolecular method for the determination of absolute configuration of chiral compounds: theoretical derivatization and a demonstration for phenolic crown ether—2-amino-1-ethanol system. Anal. Chem. 79, 6295–6302 (2007)

    Article  CAS  Google Scholar 

  35. Sawada, M., Okumura, Y., Shizuma, M., Takai, Y., Hidaka, Y., Yamada, H., Tanaka, T., Kaneda, T., Hirose, K., Misumi, S., Takahashi, S.: Enantioselective complexation of carbohydrate or crown ether hosts with organic ammonium ion guests detected by FAB mass spectrometry. J. Am. Chem. Soc. 115, 7381–7388 (1993)

    Article  CAS  Google Scholar 

  36. Sawada, M., Okumura, Y., Yamada, H., Takai, Y., Takahashi, S., Kaneda, T., Hirose, K., Misumi, S.: Cross-chiral examinations of molecular enantioselective recognition by fast atom bombardment mass spectrometry: host–guest complexations between chiral crown ethers and chiral organic ammonium ions. Org. Mass Spectrom. 28, 1525–1528 (1993)

    Article  CAS  Google Scholar 

  37. Sawada, M., Takai, Y., Yamada, H., Kaneda, T., Kamada, K., Mizooku, T., Hirose, K., Tobe, Y., Naemura, K.: Chiral recognition in molecular complexation for the crown ether-amino ester system. A facile FAB mass spectrometric approach. J. Chem. Soc. Chem. Commun., 2497–2498 (1994)

  38. Sawada, M., Takai, Y., Yamada, H., Hirayama, S., Kaneda, T., Tanaka, T., Kamada, K., Mizooku, T., Takeuchi, S., Ueno, K., Hirose, K., Tobe, Y., Naemura, K.: Chiral recognition in host–guest complexation determined by the enantiomer-labeled guest method using fast atom bombardment mass spectrometry. J. Am. Chem. Soc. 117, 7726–7736 (1995)

    Article  CAS  Google Scholar 

  39. Sawada, M., Takai, Y., Kaneda, T., Arakawa, R., Okamoto, M., Doe, H., Matsuo, T., Naemura, K., Hirose, K., Tobe, Y.: Chiral molecular recognition in electrospray ionization mass spectrometry. Chem. Commun., 1735–1736 (1996)

  40. Sawada, M., Takai, Y., Yamada, H., Nishida, J., Kaneda, T., Arakawa, R., Okamoto, M., Hirose, K., Tanaka, T., Naemura, K.: Chiral amino acid recognition detected by electrospray ionization (ESI) and fast atom bombardment (FAB) mass spectrometry (MS) coupled with the enantiomer labelled (EL) guest method. J. Chem. Soc. Perkin Trans. 2, 701–710 (1998)

    Google Scholar 

  41. Sawada, M., Hagita, K., Imamura, H., Tabuchi, H., Yodoya, S., Umeda, M., Takai, Y., Yamada, H., Yamaoka, H., Hirose, K., Tobe, Y., Tanaka, T., Takahashi, S.: Chiral recognition ability of crown ethers toward organic amine compounds: FAB mass spectrometry coupled with the enantiomer-labeled guest method. J. Mass Spectrom. Soc. Jpn. 48, 323–332 (2000)

    CAS  Google Scholar 

  42. Sawada, M., Takai, Y., Imamura, H., Yamada, H., Takahashi, S., Yamaoka, H., Hirose, K., Tobe, Y., Tanaka, J.: Chiral recognizable host–guest interactions detected by fast-atom bombardment mass spectrometry: application to the enantiomeric excess determination of primary amines. Eur. J. Mass Spectrom. 7, 447–459 (2001)

    Article  CAS  Google Scholar 

  43. Sawada, M., Takai, Y., Yamada, H., Yoshikawa, M., Arakawa, R., Tabuchi, H., Takada, M., Tanaka, J., Shizuma, M., Yamaoka, H., Hirose, K., Fukuda, K., Tobe, Y.: Depression of the apparent chiral recognition ability obtained in the host–guest complexation systems by electrospray and nano-electrospray ionization mass spectrometry. Eur. J. Mass Spectrom. 10, 27–37 (2004)

    Article  CAS  Google Scholar 

  44. Nishioka, R., Ueshige, T., Nakamura, T., Hirose, K., Tobe, Y.: Preparation and evaluation of novel chiral stationary phases chemically bonded with chiral pseudo crown ether. Chromatography 21, 294–295 (2000)

    Google Scholar 

  45. Ueshige, T., Nishioka, R., Nakamura, T., Hirose, K., Tobe, Y.: Enantiomeric separations of stimulant materials using chiral stationary phase bonded with pseudo crown ether. Chromatography 21, 368–369 (2000)

    CAS  Google Scholar 

  46. Hirose, K., Nakamura, T., Nishioka, R., Ueshige, T., Tobe, Y.: Preparation and evaluation of novel chiral stationary phases covalently bound with chiral pseudo-18-crown-6 ethers. Tetrahedron Lett. 44, 1549–1551 (2003)

    Article  CAS  Google Scholar 

  47. Hirose, K., Jin, Y.Z., Nakamura, T., Nishioka, R., Ueshige, T., Tobe, Y.: Chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether for enantiomer separation of amino compounds using a normal mobile phase. Chirality 17, 142–148 (2005)

    Article  CAS  Google Scholar 

  48. Hirose, K., Jin, Y.Z., Nakamura, T., Nishioka, R., Ueshige, T., Tobe, Y.: Preparation and evaluation of a chiral stationary phase covalently bound with chiral pseudo-18-crown-6 ether having 1-phenyl-1,2-cyclohexanediol as a chiral unit. J. Chromatogr. A 1078, 35–41 (2005)

    Article  CAS  Google Scholar 

  49. Jin, Y.Z., Hirose, K., Nakamura, T., Nishioka, R., Ueshige, T., Tobe, Y.: Preparation and evaluation of a chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether having a phenolic hydroxy group for enantiomer separation of amino compounds. J. Chromatogr. A 1129, 201–207 (2006)

    Article  CAS  Google Scholar 

  50. Chun, K., Kim, T.H., Lee, O.-S., Hirose, K., Chung, T.D., Chung, D.S., Kim, H.: Structure-selective recognition by voltammetry: enantiomeric determination of amines using azophenolic crowns in aprotic solvent. Anal. Chem. 78, 7597–7600 (2006)

    Article  CAS  Google Scholar 

  51. Nakashima, K., Nagaoka, Y., Nakatsuji, S.I., Kaneda, T., Tanigawa, I., Hirose, K., Misumi, S., Akiyama, S.: Fluorescence reactions of “crowned” benzothiazolylphenols with alkali and alkaline earth metal ions and their analytical applications. Bull. Chem. Soc. Jpn. 60, 3219–3223 (1987)

    Article  CAS  Google Scholar 

  52. Takagi, M., Nakamura, H.: Analytical application of functionalized crown ether-metal complexes. J. Coord. Chem. 15, 53–82 (1986)

    Article  CAS  Google Scholar 

  53. Desilva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., Mccoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)

    Article  CAS  Google Scholar 

  54. Hisamoto, H.: Ion-selective optodes: Current developments and future prospects. TrAC Trends Anal. Chem. 18, 513–524 (1999)

    Article  CAS  Google Scholar 

  55. Yamauchi, A., Hayashita, T., Nishizawa, S., Watanabe, M., Teramae, N.: Benzo-15-crown-5 fluoroionophore/gamma-cyclodextrin complex with remarkably high potassium ion sensitivity and selectivity in water. J. Am. Chem. Soc. 121, 2319–2320 (1999)

    Article  CAS  Google Scholar 

  56. Stradiotto, N.R., Yamanaka, H., Zanoni, M.V.B.: Electrochemical sensors: a powerful tool in analytical chemistry. J. Braz. Chem. Soc. 14, 159–173 (2003)

    Article  CAS  Google Scholar 

  57. Hayashita, T., Yamauchi, A., Tong, A.J., Lee, J.C., Smith, B.D., Teramae, N.: Design of supramolecular cyclodextrin complex sensors for ion and molecule recognition in water. J. Incl. Phenom. Macrocycl. Chem. 50, 87–94 (2004)

    CAS  Google Scholar 

  58. Uchida, S., Komatsu, Y., Satoh, H., Yajima, S., Kimura, K., Tobe, Y., Sasaki, S., Mizuno, M., Watanabe, Y., Hirose, K.: Properties of dendritic and cyclic thiourea derivatives as neutral carriers for anion sensor. Bunseki Kagaku 53, 943–952 (2004)

    Article  CAS  Google Scholar 

  59. Hisaki, I., Sasaki, S.I., Hirose, K., Tobe, Y.: Synthesis and anion-selective complexation of homobenzylic, tripodal thiourea derivatives. Eur. J. Org. Chem., 607–615 (2007)

  60. Faridbod, F., Ganjali, M.R., Dinarvand, R., Norouzi, P., Riahi, S.: Schiff’s bases and crown ethers as supramolecular sensing materials in the construction of potentiometric membrane sensors. Sensors 8, 1645–1703 (2008)

    Article  CAS  Google Scholar 

  61. Tsubaki, K.: Colorimetric recognition using functional phenolphthalein derivatives. J. Incl. Phenom. Macrocycl. Chem. 61, 217–225 (2008)

    Article  CAS  Google Scholar 

  62. Ozawa, R., Hayashita, T., Matsui, T., Nakayama, C., Yamauchi, A., Suzuki, I.: Effects of cyclodextrins and saccharides on dual fluorescence of N,N-dimethyl-4-aminophenylboronic acid in water. J. Incl. Phenom. Macrocycl. Chem. 60, 253–261 (2008)

    Article  CAS  Google Scholar 

  63. Sogah, G.D.Y., Cram, D.J.: Total chromatographic optical resolutions of alpha-amino acid and ester salts through chiral recognition by a host covalently bound to polystyrene resin. J. Am. Chem. Soc. 98, 3038–3041 (1976)

    Article  CAS  Google Scholar 

  64. Sogah, G.D.Y., Cram, D.J.: Host–guest complexation.14. Host covalently bound to polystyrene resin for chromatographic resolution of enantiomers of amino acid and ester salts. J. Am. Chem. Soc. 101, 3035–3042 (1979)

    Article  CAS  Google Scholar 

  65. Sousa, L.R., Sogah, G.D.Y., Hoffman, D.H., Cram, D.J.: Host–guest complexation. 12. Total optical resolution of amine and amino ester salts by chromatography. J. Am. Chem. Soc. 100, 4569–4576 (1978)

    Article  CAS  Google Scholar 

  66. Machida, Y., Nishi, H., Nakamura, K., Nakai, H., Sato, T.: Enantiomeric separation of diols and beta-amino alcohols by chiral stationary phase derived from (R,R)-tartramide. J. Chromatogr. A 757, 73–79 (1997)

    Article  CAS  Google Scholar 

  67. Machida, Y., Nishi, H., Nakamura, K., Nakai, H., Sato, T.: Enantiomer separation of amino compounds by a novel chiral stationary phase derived from crown ether. J. Chromatogr. A 805, 85–92 (1998)

    Article  CAS  Google Scholar 

  68. Machida, Y., Nishi, H., Nakamura, K.: Separation of the enantiomers of amino and amide compounds on novel chiral stationary phases derived from a crown ether. Chromatographia 49, 621–627 (1999)

    Article  CAS  Google Scholar 

  69. Hyun, M.H., Jin, J.S., Lee, W.J.: Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J. Chromatogr. A 822, 155–161 (1998)

    Article  Google Scholar 

  70. Hyun, M.H., Jin, J.S., Koo, H.J., Lee, W.J.: Liquid chromatographic resolution of racemic amines and amino alcohols on a chiral stationary phase derived from crown ether. J. Chromatogr. A 837, 75–82 (1999)

    Article  CAS  Google Scholar 

  71. Maier, N.M., Franco, P., Lindner, W.: Separation of enantiomers: needs, challenges, perspectives. J. Chromatogr. A 906, 3–33 (2001)

    Article  CAS  Google Scholar 

  72. Hyun, M.H.: Characterization of liquid chromatographic chiral separation on chiral crown ether stationary phases. J. Sep. Sci. 26, 242–250 (2003)

    Article  CAS  Google Scholar 

  73. Cram, D.J., Cram, J.M.: Design of complexes between synthetic hosts and organic guests. Acc. Chem. Res. 11, 8–14 (1978)

    Article  CAS  Google Scholar 

  74. Cram, D.J., Trueblood, K.N.: Concept, structure, and binding in complexation. Top. Curr. Chem. 98, 43–106 (1981)

    Article  CAS  Google Scholar 

  75. Izake, E.L.: Chiral discrimination and enantioselective analysis of drugs: an overview. J. Pharm. Sci. 96, 1659–1676 (2007)

    Article  CAS  Google Scholar 

  76. Kubo, Y., Maeda, S., Tokita, S., Kubo, M.: Colorimetric chiral recognition by a molecular sensor. Nature 382, 522–524 (1996)

    Article  CAS  Google Scholar 

  77. Van Delden, R.A., Feringa, B.L.: Color indicators of molecular chirality based on doped liquid crystals. Angew. Chem. Int. Ed. 40, 3198–3200 (2001)

    Article  Google Scholar 

  78. Van Delden, R.A., Feringa, B.L.: Colour indicator for enantiomeric excess and assignment of the configuration of the major enantiomer of an amino acid ester. Chem. Commun., 174–175 (2002)

  79. Dietrichbuchecker, C., Sauvage, J.P.: Templated synthesis of interlocked macrocyclic ligands, the catenands. Preparation and characterization of the prototypical bis-30 membered ring system. Tetrahedron 46, 503–512 (1990)

    Article  CAS  Google Scholar 

  80. Sauvage, J.P.: Interlacing molecular threads on transition-metals—catenands, catenates, and knots. Acc. Chem. Res. 23, 319–327 (1990)

    Article  CAS  Google Scholar 

  81. Sauvage, J.P.: Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998)

    Article  CAS  Google Scholar 

  82. Dietrichbuchecker, C.O., Sauvage, J.P.: A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. Engl. 28, 189–192 (1989)

    Article  Google Scholar 

  83. Ogino, H.: Relatively high-yield syntheses of rotaxanes—syntheses and properties of compounds consisting of cyclodextrins threaded by alpha, omega-diaminoalkanes coordinated to cobalt(iii) complexes. J. Am. Chem. Soc. 103, 1303–1304 (1981)

    Article  CAS  Google Scholar 

  84. Kolchinski, A.G., Busch, D.H., Alcock, N.W.: Gaining control over molecular threading: benefits of second coordination sites and aqueous-organic interfaces in rotaxane synthesis. J. Chem. Soc. Chem. Commun., 1289–1291 (1995)

  85. Simonsen, K.B., Becher, J.: Tetrathiafulvalene thiolates: important synthetic building blocks for macrocyclic and supramolecular chemistry. Synlett 11, 1211–1220 (1997)

    Article  Google Scholar 

  86. Kawasaki, H., Kihara, N., Takata, T.: High yielding and practical synthesis of rotaxanes by acylative end-capping catalyzed by tributylphosphine. Chem. Lett., 1015–1016 (1999)

  87. Zehnder, D.W., Smithrud, D.B.: Facile synthesis of rotaxanes through condensation reactions of dcc-2 rotaxanes. Org. Lett. 3, 2485–2487 (2001)

    Article  CAS  Google Scholar 

  88. Furusho, Y., Rajkumar, G.A., Oku, T., Takata, T.: Synthesis of 2 rotaxanes by tritylative endcapping of in situ formed pseudorotaxanes having thiol or hydroxyl functionality on the axle termini. Tetrahedron 58, 6609–6613 (2002)

    Article  CAS  Google Scholar 

  89. Schalley, C.A., Weilandt, T., Bruggemann, J., Vogtle, F.: Hydrogen-bond-mediated template synthesis of rotaxanes, catenanes, and knotanes. Templates Chem I 248, 141–200 (2004)

    Google Scholar 

  90. Yoon, I., Narita, M., Shimizu, T., Asakawa, M.: Threading-followed-by-shrinking protocol for the synthesis of a [2] rotaxane incorporating a pd(ii)-salophen moiety. J. Am. Chem. Soc. 126, 16740–16741 (2004)

    Article  CAS  Google Scholar 

  91. Arico, F., Badjic, J.D., Cantrill, S.J., Flood, A.H., Leung, K.C.F., Liu, Y., Stoddart, J.F.: Templated synthesis of interlocked molecules. Templates Chem II. 203–259 (2005)

  92. Miljanic, O.S., Dichtel, W.R., Aprahamian, I., Rohde, R.D., Agnew, H.D., Heath, J.R., Stoddart, J.F.: Rotaxanes and catenanes by click chemistry. QSAR Comb. Sci. 26, 1165–1174 (2007)

    Article  CAS  Google Scholar 

  93. Narita, M., Yoon, I., Aoyagi, M., Goto, M., Shimizu, T., Asakawa, M.: Transition metal(ii)-salen and -salophen macrocyclic complexes for rotaxane formation: syntheses and crystal structures. Eur. J. Inorg. Chem., 4229–4237 (2007)

  94. Nakazono, K., Oku, T., Takata, T.: Synthesis of rotaxanes consisting of crown ether wheel and sec-ammonium axle under basic condition. Tetrahedron Lett. 48, 3409–3411 (2007)

    Article  CAS  Google Scholar 

  95. Haussmann, P.C., Stoddart, J.F.: Synthesizing interlocked molecules dynamically. Chem. Rec. 9, 136–154 (2009)

    Article  CAS  Google Scholar 

  96. Harrison, I.T., Harrison, S.: Synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc. 89, 5723–5724 (1967)

    Article  CAS  Google Scholar 

  97. Schill, G., Zollenko, H.: Rotaxane compounds. 1. Liebigs Ann. Chem. 721, 53–74 (1969)

    Article  CAS  Google Scholar 

  98. Schill, G., Henschel, R.: Rotaxane compounds. 2. A diansa compound of 5-amino-6-methoxy-4.7-dimethylbenzodioxole as a model of catenanes and rotaxanes. Liebigs Ann. Chem. 731, 113–119 (1970)

    Article  CAS  Google Scholar 

  99. Hiratani, K., Suga, J., Nagawa, Y., Houjou, H., Tokuhisa, H., Numata, M., Watanabe, K.: A new synthetic method for rotaxanes via tandem claisen rearrangement, diesterification, and aminolysis. Tetrahedron Lett. 43, 5747–5750 (2002)

    Article  CAS  Google Scholar 

  100. Hiratani, K., Kaneyama, M., Nagawa, Y., Koyama, E., Kanesato, M.: Synthesis of [1] rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. J. Am. Chem. Soc. 126, 13568–13569 (2004)

    Article  CAS  Google Scholar 

  101. Kameta, N., Hiratani, K., Nagawa, Y.: A novel synthesis of chiral rotaxanes via covalent bond formation. Chem. Commun., 466–467 (2004)

  102. Nagawa, Y., Suga, J., Hiratani, K., Koyama, E., Kanesato, M.: 3 rotaxane synthesized via covalent bond formation can recognize cations forming a sandwich structure. Chem. Commun., 749–751 (2005)

  103. Hirose, K., Nishihara, K., Harada, N., Nakamura, Y., Masuda, D., Araki, M., Tobe, Y.: Highly selective and high-yielding rotaxane synthesis via aminolysis of prerotaxanes consisting of a ring component and a stopper unit. Org. Lett. 9, 2969–2972 (2007)

    Article  CAS  Google Scholar 

  104. Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)

    Article  CAS  Google Scholar 

  105. Anelli, P.L., Spencer, N., Stoddart, J.F.: A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991)

    Article  CAS  Google Scholar 

  106. Collier, C.P., Wong, E.W., Belohradsky, M., Raymo, F.M., Stoddart, J.F., Kuekes, P.J., Williams, R.S., Heath, J.R.: Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    Article  CAS  Google Scholar 

  107. Wong, E.W., Collier, C.P., Belohradsky, M., Raymo, F.M., Stoddart, J.F., Heath, J.R.: Fabrication and transport properties of single-molecule-thick electrochemical junctions. J. Am. Chem. Soc. 122, 5831–5840 (2000)

    Article  CAS  Google Scholar 

  108. Pease, A.R., Jeppesen, J.O., Stoddart, J.F., Luo, Y., Collier, C.P., Heath, J.R.: Switching devices based on interlocked molecules. Acc. Chem. Res. 34, 433–444 (2001)

    Article  CAS  Google Scholar 

  109. Collier, C.P., Mattersteig, G., Wong, E.W., Luo, Y., Beverly, K., Sampaio, J., Raymo, F.M., Stoddart, J.F., Heath, J.R.: A [2] catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000)

    Article  CAS  Google Scholar 

  110. Green, J.E., Wook Choi, J., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., Deionno, E., Luo, Y., Sheriff, B.A., Xu, K., Shik Shin, Y., Tseng, H.R., Stoddart, J.F., Heath, J.R.: A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007)

    Article  CAS  Google Scholar 

  111. Balzani, V., Venturi, M., Credi, A.: Molecular Devices and Machines—A Journey into the Nanoworld. Wiley-VCH, Weinheim (2003)

    Book  Google Scholar 

  112. Balzani, V., Credi, A., Venturi, M.: Molecular Devices and Machines-Concepts and Perspectives for the Nanoworld. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  113. http://www.its.caltech.edu/~feynman/

  114. Kelly, T.R., Bowyer, M.C., Bhaskar, K.V., Bebbington, D., Garcia, A., Lang, F.R., Kim, M.H., Jette, M.P.: A molecular brake. J. Am. Chem. Soc. 116, 3657–3658 (1994)

    Article  CAS  Google Scholar 

  115. Lane, A.S., Leigh, D.A., Murphy, A.: Peptide-based molecular shuttles. J. Am. Chem. Soc. 119, 11092–11093 (1997)

    Article  CAS  Google Scholar 

  116. Bermudez, V., Capron, N., Gase, T., Gatti, F.G., Kajzar, F., Leigh, D.A., Zerbetto, F., Zhang, S.: Influencing intramolecular motion with an alternating electric field. Nature 406, 608–611 (2000)

    Article  CAS  Google Scholar 

  117. Ghosh, P., Federwisch, G., Kogej, M., Schalley, C.A., Haase, D., Saak, W., Lützen, A., Gschwind, R.M.: Controlling the rate of shuttling motions in [2] rotaxanes by electrostatic interactions: a cation as solvent-tunable brake. Org. Biomol. Chem. 3, 2691–2700 (2005)

    Article  CAS  Google Scholar 

  118. Coskun, A., Friedman, D.C., Li, H., Patel, K., Khatib, H.A., Stoddart, J.F.: A light-gated STOP-GO molecular shuttle. J. Am. Chem. Soc. 131, 2493–2495 (2009)

    Article  CAS  Google Scholar 

  119. Chatterjee, M.N., Kay, E.R., Leigh, D.A.: Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006)

    Article  CAS  Google Scholar 

  120. Jiang, L., Okano, J., Orita, A., Otera, J.: Intermittent molecular shuttle as a binary switch. Angew. Chem. Int. Ed. 43, 2121–2124 (2004)

    Article  CAS  Google Scholar 

  121. Chen, N.C., Lai, C.C., Liu, Y.H., Peng, S.M., Chiu, S.H.: Parking and restarting a molecular shuttle in situ. Chem. Eur. J. 14, 2904–2908 (2008)

    Article  CAS  Google Scholar 

  122. Yang, J.S., Huang, Y.T., Ho, J.H., Sun, W.T., Huang, H.H., Lin, Y.C., Huang, S.J., Huang, S.L., Lu, H.F., Chao, I.: A pentiptycene-derived light-driven molecular brake. Org. Lett. 10, 2279–2282 (2008)

    Article  CAS  Google Scholar 

  123. Hirose, K., Shiba, Y., Ishibashi, K., Doi, Y., Tobe, Y.: An anthracene-based photochromic macrocycle as a key ring component to switch a frequency of threading motion. Chem. Eur. J. 14, 981–986 (2008)

    Article  CAS  Google Scholar 

  124. Hirose, K., Shiba, Y., Ishibashi, K., Doi, Y., Tobe, Y.: A shuttling molecular machine with reversible brake function. Chem. Eur. J. 14, 3427–3433 (2008)

    Article  CAS  Google Scholar 

  125. Hirose, K., Ishibashi, K., Shiba, Y., Doi, Y., Tobe, Y.: Control of rocking mobility of rotaxanes by size change of stimulus-responsive ring components. Chem. Lett. 36, 810–811 (2007)

    Article  CAS  Google Scholar 

  126. Hirose, K., Ishibashi, K., Shiba, Y., Doi, Y., Tobe, Y.: Highly effective and reversible control of rocking rates of rotaxanes by changing size of stimulus-responsive ring components. Chem. Eur. J. 14, 5803–5811 (2008)

    Article  CAS  Google Scholar 

  127. Definition of pseudorotaxanes is inclusion complexes in which a thread-like molecule is encircled by one or more ring-like molecules in such a way that the two ends of the thread are projected away from the center of the ring. In a rotaxane, the two ends of the thread are terminated by bulky groups which do not allow the passage of the ring, thus, the two (or more) components are mutually interlocked. The prefix pseudo denotes that in a pseudorotaxane the two components are not interlocked, but instead are free to dissociate because the end groups are small enough to allow passage of the ring

  128. Becker, H.D.: Unimolecular photochemistry of anthracenes. Chem. Rev. 93, 145–172 (1993)

    Article  CAS  Google Scholar 

  129. Ashton, P.R., Campbell, P.J., Chrystal, E.J.T., Glink, P.T., Menzer, S., Philp, D., Spencer, N., Stoddart, J.F., Tasker, P.A., Williams, D.J.: Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules. Angew. Chem. Int. Ed. Engl. 34, 1865–1869 (1995)

    Article  CAS  Google Scholar 

  130. Glink, P.T., Schiavo, C., Stoddart, J.F., Williams, D.J.: The genesis of a new range of interlocked molecules. Chem. Commun., 1483–1490 (1996)

  131. Ashton, P.R., Chrystal, E.J.T., Glink, P.T., Menzer, S., Schiavo, C., Spencer, N., Stoddart, J.F., Tasker, P.A., White, A.J.P., Williams, D.J.: Pseudorotaxanes formed between secondary dialkylammonium salts and crown ethers. Chem. Eur. J. 2, 709–728 (1996)

    Article  CAS  Google Scholar 

  132. Bouas-Laurent, H., Castellan, A., Desvergne, J.P.: From anthracene photodimerization to jaw photochromic materials and photocrowns. Pure Appl. Chem. 52, 2633–2648 (1980)

    Article  CAS  Google Scholar 

  133. Moriwaki, F., Ueno, A., Osa, T., Hamada, F., Murai, K.: Photochemical conversion from flexible host to rigid host of a doubly capped γ-cyclodextrin. Chem. Lett. 15, 1865–1868 (1986)

    Article  Google Scholar 

  134. Deng, G., Sakaki, T., Kawahara, Y., Shinkai, S.: Tunable chemical sensors: light-switched ion selective electrodes on the basis of a photoresponsive calix [4] arene. Supramol. Chem. 2, 71–76 (1993)

    Article  CAS  Google Scholar 

  135. Tucker, J.H.R., Bouas-Laurent, H., Marsau, P., Riley, S.W., Desvergne, J.P.: A novel crown ether-cryptand photoswitch. Chem. Commun., 1165–1166 (1997)

  136. Yamashita, I., Fujii, M., Kaneda, T., Misumi, S.: Synthetic macrocyclic ligands. 2. Synthesis of a photochromic crown ether. Tetrahedron Lett. 21, 541–544 (1980)

    Article  CAS  Google Scholar 

  137. Desvergne, J.P., Lauret, J., Bouas-Laurent, H., Marsau, P., Lahrahar, N., Andrianatoandro, H., Cotrait, M.: Synthesis, X-ray structure, spectroscopic and cation complexation studies of macrocyclic ligands incorporating the 9, 9′-(ethane-1,2-diyl)bis(anthracene) photoactive subunit. Recl. Trav. Chim. Pays-Bas 114, 504–513 (1995)

    Article  CAS  Google Scholar 

  138. Becker, H.D., Sanchez, D., Arvidsson, A.: Reductions with diphenylhydroxymethyl radicals. Synthesis of dianthrylethanes and dianthrylethylenes. J. Org. Chem. 44, 4247–4251 (1979)

    Article  CAS  Google Scholar 

  139. Matthew, J.C., Fyfe, M.C.T., Stoddart, J.F.: Molecular shuttles by the protecting group approach. J. Org. Chem. 65, 1937–1946 (2000)

    Article  CAS  Google Scholar 

  140. To avoid the decomposition of 1, the solvent for the irradiation with high pressure mercury lamp was limited. For this reaction THF-d 8 and toluene-d 8 were chosen as suitable polar and less polar solvents

  141. The temperature for the VT-NMR measurement was limited because the cycloreversion of the closed-form rotaxane 7c started to occur at higher temperatures during the measurement

  142. Bender, H.L., Farnham, A.G., Guyer, J.W., Apal, P.N., Gibb Jr, T.B.: Ind. Eng. Chem. 44, 1619–1623 (1952)

    Article  CAS  Google Scholar 

  143. Arnett, E.M., Wu, C.Y.: Stereoelectronic effects on organic bases. 2. Base strengths of the phenolic ethers. J. Am. Chem. Soc. 82, 5660–5665 (1960)

    Article  CAS  Google Scholar 

  144. Hirose, K.: A practical guide for the determination of binding constants. J. Incl. Phenom. Macrocycl. Chem. 39, 193–209 (2001)

    Article  CAS  Google Scholar 

  145. The basicities of the phenyl alkyl ethers are affected strongly by the alkyl group due to both inductive and stereoelectronic effects

  146. Line-shape analyses were carried out using (a) P. H. M. Budzelaar, gNMR, Program for simulation of one-dimensional NMR spectra, Adept Scientific plc, Letchworth (United Kingdom), 1999; and a spreadsheet program that we made for determination of the rocking rates on (b) Microsoft Excel 2002, Microsoft Corporation, Tokyo (Japan) (2001)

  147. One of the signals of Hk which appeared at higher field was irradiated at 303 K. However, no change in the signal intensity of the other Hk signal was observed, suggesting that the relaxation time T1 of Hk is longer than the life time of the conformation. T1 was determined by the null point method

  148. Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)

    Article  CAS  Google Scholar 

  149. De Silva, A.P., Gunaratne, H.Q.N., Mccoy, C.P.: A molecular photoionic and gate based on fluorescent signalling. Nature 364, 42–44 (1993)

    Article  Google Scholar 

  150. Zheng, X., Mulcahy, M.E., Horinek, D., Galeotti, F., Magnera, T.F., Michl, J.: Dipolar and nonpolar altitudinal molecular rotors mounted on an Au(111) surface. J. Am. Chem. Soc. 126, 4540–4542 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the Organizing Committee of Host–Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2009 and the opportunity to write this review article. He acknowledges all collaborators for their efforts. He especially thanks Prof. Yoshito Tobe for his suggestions, discussions, and encouragements. This work was partly supported by the Izumi Science and Technology Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

This is a paper selected for ‘‘HGCS Japan Award of Excellence 2009’’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Hirose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, K. Molecular brake systems controlled by light and heat. J Incl Phenom Macrocycl Chem 68, 1–24 (2010). https://doi.org/10.1007/s10847-010-9748-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9748-x

Keywords

Navigation