Skip to main content
Log in

Influence of α- and γ- cyclodextrin lipophilic derivatives on curcumin-loaded SLN

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Solid lipid nanoparticles (SLN) made of different triglycerides (TG) in the presence and in the absence of various modified α- and γ-cyclodextrins (CD) were prepared by the solvent injection technique. A new synthesis of lipophilic derivatives of γ- CD was developed in this work. Curcumin (CU), a natural polyphenol with antitumor, antioxidant and anti-inflammatory properties, was used as model drug. SLNs mean sizes were in the 250–800 nm range and afforded CU entrapment efficiency in the 12–85% range. The presence of CD derivatives with almost the same chain length of TG induced an improvement of nanoparticle characteristics decreasing mean size values and increasing CU entrapment efficiency. A significant reduction in CU photodegradation was noted only when the drug was vehicled in tristearin-SLN, which became less pronounced in the presence of CD-derivatives, determining a loss in photoprotection. The hydrolytic stability of curcumin was highly improved by drug loading in tristearin-SLN, and only slightly by loading it in tricaprin-SLN, and this seemed not to be influenced by the presence of CD derivatives. Skin uptake studies revealed an increase in CU skin accumulation when CU was loaded in SLN obtained with all CD derivatives, particularly with most lipophilic one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ammon, H.P., Wahl, M.A.: Pharmacology of Curcuma Longa. Planta Med. 57, 1–7 (1991)

    Article  CAS  Google Scholar 

  2. Maheshwari, R.K., Singh, A.K., Gaddipati, J., Srimal, R.C.: Multiple biological activities of curcumin: a short review. Life Sci. 78, 2081–2087 (2006)

    Article  CAS  Google Scholar 

  3. Aggarwal, B.B., Kumar, A., Bharti, A.C.: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, 363–398 (2003)

    CAS  Google Scholar 

  4. Bush, J.A., Cheung, K.-J.J., Li, G.: Curcumin induces apoptosis in human melanoma cells through a fas receptor/caspase-8 pathway independent of p53. Exp. Cell Res. 271, 305–314 (2001)

    Article  CAS  Google Scholar 

  5. Lin, J.K., Pan, M.H., Shiau, S.Y.L.: Recent studies on the biofunctions and biotransformations of curcumin. Biofactors 13, 153–158 (2000)

    Article  CAS  Google Scholar 

  6. Pfeiffer, E., Hohle, S., Solyom, A., Metzler, M.: Studies on the stability of turmeric constituents. J. Food Eng. 56, 257–259 (2003)

    Article  Google Scholar 

  7. Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B.: Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807–818 (2007)

    Article  CAS  Google Scholar 

  8. Tiyaboonchai, W., Tungpradit, W., Plianbangchang, P.: Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int. J. Pharm. 337, 299–306 (2007)

    Article  CAS  Google Scholar 

  9. Li, L., Braiteh, F.S., Kurzrock, R.: Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling and angiogenesis. Cancer 104(6), 1322–1331 (2005)

    Article  CAS  Google Scholar 

  10. Suresh, D., Srinivasan, K.: Studies on the in vitro absorption of spice principles-curcumin, capsaicin, and piperine in rat intestines. Food Chem. Toxicol. 45, 1437–1442 (2007)

    Article  CAS  Google Scholar 

  11. Ma, Z., Haddadi, A., Molavi, O., Lavasanifar, A., Lai, R., Samuel, J.: Micelles of poly(ethylene oxide)-β-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J. Biomed. Mater. Res. A 86, 300–310 (2008)

    Google Scholar 

  12. Tønnesen, H., Masson, M., Loftsson, T.: Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int. J. Pharm. 244, 127–135 (2002)

    Article  Google Scholar 

  13. Roux, M., Perly, B., Djedaïni-Pilard, F.: Self assemblies of amphiphilic cyclodextrins. Eur. Biophys. J. 36, 861–867 (2007)

    Article  CAS  Google Scholar 

  14. Vico, R.V., Silva, O.F., De Rossi, R.H., Maggio, B.: Molecular organization, structural orientation, and surface topography of monoacylated β-cyclodextrins in monolayers at the air-aqueous interface. Langmuir 24, 7867–7874 (2008)

    Article  CAS  Google Scholar 

  15. Trotta, F., Moraglio, G., Marzona, M., Maritano, S.: Acyclic carbonates of β-cyclodextrin. Gazzetta Chimica Italiana 123, 559–562 (1993)

    CAS  Google Scholar 

  16. Franz, T.J.: The percutaneous absorption on the relevance of in vitro data. J. Invest. Dermatol. 190–195 (1975)

  17. Beck, H., Bracher, M.: Protocollo standard: assorbimento/penetrazione percutaneo/a “in vitro” con pelle suina. Acta Technologiae et Legis Medicamenti 2, 123–134 (1991)

    Google Scholar 

  18. Tong, L.H., Hou, Z.J., Inoue, Y., Tai, A.: Molecular recognition by modified cyclodextrins. Inclusion complexation of β-cyclodextrin 6-O-monobenzoate with acyclic and cyclic hydrocarbons. J. Chem. Soc. Perkin Trans. 2, 1253–1257 (1992)

    Google Scholar 

  19. Rao, C.T., Lindberg, B., Lindberg, J., Pitha, J.: Substitution in beta-cyclodextrin directed by basicity: preparation of 2-O-and 6-O-[(R)-and (S)-2-hydroxypropyl] derivatives. J. Org. Chem. 56, 1327–1329 (1991)

    Article  CAS  Google Scholar 

  20. Xiao, Y., Wu, Q., Wanga, N., Lin, X.: Regioselective monoacylation of cyclomaltoheptaose at the C-2 secondary hydroxyl groups by the alkaline protease from Bacillus subtilis in nonaqueous media. Carbohydr. Res. 339, 1279–1283 (2004)

    Article  CAS  Google Scholar 

  21. Cavalli, R., Trotta, F., Carlotti, M.E., Possetti, B., Trotta, M.: Nanoparticles derived from amphiphilic γ-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 57, 657–661 (2007)

    Article  CAS  Google Scholar 

  22. Siekmann, B., Westesen, K.: Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids Surf. B 3, 159–175 (1994)

    Google Scholar 

  23. Weber, W.M., Hunsaker, L.A., Abcouwer, S.F., Deck, L.M., Vander Jagt, D.L.: Auto-oxidant activities of curcumin and related enones. Bioorg. Med. Chem. 13, 3811–3820 (2005)

    Article  CAS  Google Scholar 

  24. Srinivasan, M., Rajendra Prasad, N., Menon, V.P.: Protective effect of curcumin on γ-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat. Res. 611, 96–103 (2006)

    CAS  Google Scholar 

  25. Müller, R.H., Radtke, M., Wissing, S.A.: Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54, 131–155 (2002)

    Article  Google Scholar 

  26. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1024 (1996)

    Article  CAS  Google Scholar 

  27. Tønnesen, H.H., Karlsen, J.: Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution. Z. Lebensm.-Unters.-Forsch. 180, 402–404 (1985)

    Article  Google Scholar 

  28. Tønnesen, H.H., Karlsen, J.: Studies on curcumin and curcuminoids. V. Alkaline degradation of curcumin. Z. Lebensm.-Unters.-Forsch. 180, 132–134 (1985)

    Article  Google Scholar 

  29. Shishodia, S., Chaturvedi, M.M., Aggarwal, B.B.: Role of Curcumin in Cancer Therapy. Curr. Probl. Cancer 31, 243–305 (2007)

    Article  Google Scholar 

  30. Huang, M.T., Ma, W., Yen, P., Xie, J.G., Han, J., Frenkel, K.: Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis 18, 83–88 (1997)

    Article  CAS  Google Scholar 

  31. Azuine, M.A., Kayal, J.J., Bhide, S.V.: Protective role of aqueous turmeric extract against mutagenicity of direct-acting carcinogens as well as benzo-pyrene induced genotoxicity and carcinogenicity. J. Cancer Res. Clin. Oncol. 118, 447–452 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Italian Government (MIUR, Cofin 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Gallarate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirio, D., Gallarate, M., Trotta, M. et al. Influence of α- and γ- cyclodextrin lipophilic derivatives on curcumin-loaded SLN. J Incl Phenom Macrocycl Chem 65, 391–402 (2009). https://doi.org/10.1007/s10847-009-9597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9597-7

Keywords

Navigation