Skip to main content

Advertisement

Log in

Achievement of pH-independence of poorly-soluble, ionizable loratadine by inclusion complex formation with dimethyl-β-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A tricyclic, piperidine derivative of antihistamines, loratadine, which belongs in class II of the Biopharmaceutical Classification System, was investigated. It is an ionizable drug, whose solubility depends on the gastrointestinal pH, and the bioavailability is therefore very variable. The aim of this work was to enhance the dissolution and make the solubility of loratadine independent of pH. Inclusion complexes were prepared between loratadine and dimethyl-β-cyclodextrin in two different molar ratios by three techniques (physical mixing, kneading and spray-drying). The formation and physicochemical properties of the inclusion complexes were investigated by means of dissolution tests, thermal analysis and Fourier Transform Infrared spectroscopy. The instrumental examinations proved the presence of partial or total complexes depending on the preparation method and molar ratio, which resulted in better dissolution. For some compositions and preparation methods, the application of this cyclodextrin made the solubility of loratadine independent of pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Merisko-Liversidge, E., Liversidge, G.G., Cooper, E.R.: Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 18, 113–120 (2003). doi:10.1016/S0928-0987(02)00251-8

    Article  CAS  Google Scholar 

  2. Loftsson, T., Jarho, P., Másson, M., Järvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2, 335–351 (2005). doi:10.1517/17425247.2.1.335

    Article  CAS  Google Scholar 

  3. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  4. Pouton, C.W.: Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29, 278–287 (2006). doi:10.1016/j.ejps.2006.04.016

    Article  CAS  Google Scholar 

  5. Bhattachar, S.N., Deschenes, L.A., Wesley, J.A.: Solubility: it’s not just for physical chemists. Drug Discov. Today 11, 1012–1018 (2006). doi:10.1016/j.drudis.2006.09.002

    Article  CAS  Google Scholar 

  6. Hörter, D., Dressman, J.B.: Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev. 46, 75–87 (2001). doi:10.1016/S0169-409X(00)00130-7

    Article  Google Scholar 

  7. Dressman, J.B., Amidon, G.L., Reppas, C., Shah, V.P.: Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res. 15, 11–22 (1998). doi:10.1023/A:1011984216775

    Article  CAS  Google Scholar 

  8. Zimmermann, T., Yeates, R.A., Laufen, H., Pfaff, G., Wildfeuer, A.: Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur. J. Clin. Pharmacol. 46, 147–150 (1994). doi:10.1007/BF00199879

    Article  CAS  Google Scholar 

  9. Dashevsky, A., Kolter, K., Bodmeier, R.: pH-independent release of a basic drug from pellets coated with the extended release polymer dispersion Kollicoatw SR 30 D and the enteric polymer dispersion Kollicoatw MAE 30 DP. Eur. J. Pharm. Biopharm. 58, 45–49 (2004). doi:10.1016/j.ejpb.2004.03.013

    Article  CAS  Google Scholar 

  10. Estelle, F., Simons, R.: Comparative pharmacology of H1 antihistamines: clinical relevance. Am. J. Med. 113(9), 38–46 (2002)

    Google Scholar 

  11. Khan, M.Z., Raušl, D., Zanoški, R., Zidar, S., Mikulčić, J.H., Krizmanić, L., Eškinja, M., Mildner, B., Knežević, Z.: Classification of loratadine based on the biopharmaceutics drug classification concept and possible in vitro–in vivo correlation. Biol. Pharm. Bull. 27(10), 1630–1635 (2004). doi:10.1248/bpb.27.1630

    Article  CAS  Google Scholar 

  12. Omar, L., El-Barghouthi, M.I., Masoud, N.A., Abdoh, A.A., Al Omari, M.M., Zughul, M.B., Badwan, A.A.: Inclusion complexation of loratadine with natural and modified cyclodextrins: phase solubility and thermodynamic studies. J. Solution Chem. 36, 605–616 (2007). doi:10.1007/s10953-007-9136-3

    Article  CAS  Google Scholar 

  13. ter Laak, A.M., Tsai, R.S., Donné-Op den Kelder, G.M., Carrupt, P.-A., Testa, B., Timmermann, H.: Lipophilicity and hydrogen-bonding capacity of H1-antihistaminic agents in relation to their central sedative side-effects. Eur. J. Pharm. Sci. 2, 373–384 (1994). doi:10.1016/0928-0987(94)00065-4

    Article  CAS  Google Scholar 

  14. Moffat, A.C., Osselton, M.D., Widdop, B.: Clarke’s Analysis of Drugs and Poisons, 3rd ed. edn. Pharmaceutical Press, London (2004)

    Google Scholar 

  15. Caliaro, G.A., Herbots, C.A.: Determination of pKa values of basic new drug substances by CE. J. Pharm. Biomed. Anal. 26, 427–434 (2001). doi:10.1016/S0731-7085(01)00423-X

    Article  CAS  Google Scholar 

  16. Peterson, M.L., Hickey, M.B., Zaworotko, M.J., Almarsson, Ö.: Expanding the scope of crystal form evaluation in pharmaceutical science. J. Pharm. Pharm. Sci. 9, 317–326 (2006)

    Google Scholar 

  17. Carrier, R.L., Miller, L.A., Ahmed, I.: The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release 123, 78–99 (2007). doi:10.1016/j.jconrel.2007.07.018

    Article  CAS  Google Scholar 

  18. Badr-Eldin, S.M., Elkheshen, S.A., Ghorab, M.M.: Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: preparation and in vitro evaluation. Eur. J. Pharm. Biopharm. 70, 819–827 (2008). doi:10.1016/j.ejpb.2008.06.024

    Article  CAS  Google Scholar 

  19. Kata, M., Ambrus, R., Aigner, Z.: Preparation and investigation of inclusion complexes containing nifluminic acid and cyclodextrins. J. Incl. Phenom. 44, 123–126 (2002). doi:10.1023/A:1023074025175

    Article  CAS  Google Scholar 

  20. Hassan, H.B., Kata, M., Erős, I., Aigner, Z.: Preparation and investigation of inclusion complexes containing gemfibrozil and DIMEB. J. Incl. Phenom. 50, 219–225 (2004). doi:10.1007/s10847-004-3124-7

    Article  Google Scholar 

  21. Amidon, G.L., Lennernas, H., Shah, V.P., Crison, J.R.: A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12, 413–420 (1995). doi:10.1023/A:1016212804288

    Article  CAS  Google Scholar 

  22. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001). doi:10.1016/S0169-409X(00)00129-0

    Article  CAS  Google Scholar 

  23. Marttin, E., Verhoef, J.C., Merkus, F.W.: Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J. Drug Target. 6, 17–36 (1998)

    Article  CAS  Google Scholar 

  24. Loftsson, T., Brewster, M.E., Másson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2, 261–275 (2004). doi:10.2165/00137696-200402040-00006

    Article  CAS  Google Scholar 

  25. Desiraju, G.R.: Crystal and co-crystal. Cryst. Eng. Commun. 5, 466–467 (2003). doi:10.1039/b313552g

    CAS  Google Scholar 

Download references

Acknowledgements

This work was performed with the support of a Sanofi-Aventis Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Aigner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nacsa, Á., Berkesi, O., Szabó-Révész, P. et al. Achievement of pH-independence of poorly-soluble, ionizable loratadine by inclusion complex formation with dimethyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 64, 249–254 (2009). https://doi.org/10.1007/s10847-009-9558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9558-1

Keywords

Navigation