Skip to main content
Log in

Stability constants of complexes formed by new Schiff-base lariat ethers derived from 4,13-diaza-18-crown-6 with Ag+, Pb2+, Cu2+ cations determined by competitive potentiometry

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The stability of complexes formed by a series of Schiff-base lariat ethers, derived from 4,13-diaza-18-crown-6, 1 with Ag+, Pb2+, Cu2+ cations, has been comparatively determined, in methanol: dichloromethane solution. We present here the synthesis and an interesting competitive potentiometry method useful for the stability constant determination for a new family of Schiff-base bibracchial lariat ethers. The stability constants and the selectivity in competitive complexation of Ag+, Pb2+ and Cu2+ cations by macrocyclic receptors 1–7 (L), can be accurately evaluated and species distribution diagrams can be calculated for individual system. In all cases further functionalization of bibracchial lariat ethers 2–7 is accompanied by an increasing of the selectivity, relative to the complexes of the initial 4,13-diaza-18-crown-6 macrocycle 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89(26), 7017–7036 (1967)

    Article  CAS  Google Scholar 

  2. Lehn, J-.M.: Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc. Chem. Res. 11(2), 49–57 (1978)

    Article  CAS  Google Scholar 

  3. Graf, E., Lehn, J.-M.: Cryptates. XVII. Synthesis and cryptate complexes of a spheroidal macrotricyclic ligand with octahedrotetrahedral coordination. J. Am. Chem. Soc. 97(17), 5022–5024 (1975)

    Article  CAS  Google Scholar 

  4. Cram, D.J.: Cavitands: organic hosts with enforced cavities. Science 219, 1177–1183 (1983)

    Article  CAS  Google Scholar 

  5. Lehn, J.-M., Sauvage, P.J.: Cryptates. XVI. [2]-Cryptates. stability and selectivity of alkali and alkaline-earth macrobicyclic complexes. J. Am. Chem. Soc. 97(23), 6700–6707 (1975)

    Article  CAS  Google Scholar 

  6. Lehn, J.-M.: Supramolecular chemistry—scope and perspectives: molecules—supermolecules molecular devices. J. Inclusion Phenom. Mol. Rec. 6, 351–396 (1988)

    Article  CAS  Google Scholar 

  7. Izatt, R.M., Pawlak, K., Bradshaw, S.J., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem. Rev. 91(8), 1721–2085 (1991)

    Article  CAS  Google Scholar 

  8. Gokel, G.W., Durst, D.H.: Principles and synthetic applications in crown ether chemistry. Synthesis 3, 168–184 (1976)

    Google Scholar 

  9. Lindoy, L.F.: The Chemistry of Macrocyclic Ligand Complexes. Cambridge Univ. Press, Cambridge (1989)

    Google Scholar 

  10. Lamb, D.J., Christenson, M.D.: Macrocyclic ligands in sepeartions. J. Incl. Phenom. Macroc. Chem. 32(2–3), 107–119 (1998)

    Article  CAS  Google Scholar 

  11. Bond, A.H., Dietz, M.L., Chiarizia, R.: Incorporating size selectivity into synergistic solvent extraction: a review of crown ether-containing systems. Ind. Eng. Chem. Res. 39(10), 3442–3464 (2000)

    Article  CAS  Google Scholar 

  12. Hyun, M.H: Development and application of crown ether-based HPLC chiral stationary phases. Bull. Korean Chem. Soc. 26(8), 1153–1163 (2005)

    Article  CAS  Google Scholar 

  13. Moyer, B.A., Bonnesen, P.V., Custelcean, R., Delmau, L.H., Hay, B.P.: Strategies for using host-guest chemistry in the extractive separations of ionic guests. Kem. Ind. 54(2), 65–87 (2005)

    CAS  Google Scholar 

  14. Tsukube, H.: Double armed crown ethers and armed macrocycles as a new series of metal-selective reagents: a review. Talanta 40(9), 1313–1324 (1993)

    Article  CAS  Google Scholar 

  15. Luca, C., Tanase, I., Josceanu, A.M.: Applications of Supramolecular Chemistry. Ed. Tehnica, Bucuresti (1996)

    Google Scholar 

  16. Cronin, L.: Macrocyclic and supramolecular coordination chemistry—review article. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 100, 323–383 (2004)

    Article  CAS  Google Scholar 

  17. Hartley, H.J., James, T.D., Ward, C.J.: Synthetic receptors. J. Chem .Soc. Perkin Trans.1 Review Perkin 19, 3155–3184 (2000)

    Google Scholar 

  18. Lehn, J.-M.: Supramolecular Chemistry-Concept and Perspectives. VCH, Weinheim (1995)

    Google Scholar 

  19. Lehn, J.M.: Supramolecular chemistry and self-assembly special feature: toward complex matter: supramolecular chemistry and self-organization. Proc. Nat. Acad. Sci. 99, 4763–4796 (2002)

    Article  CAS  Google Scholar 

  20. Lehn, J.M.: Toward self-organization and complex matter. Science 295, 2400–2403 (2002)

    Article  CAS  Google Scholar 

  21. Lehn, J.M.: Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 30, 814–831 (2005)

    Article  CAS  Google Scholar 

  22. Quesada, R., Gale, P.A.: Supramolecular chemistry. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 101, 148–170 (2005)

    Article  CAS  Google Scholar 

  23. Pletnev, I.V.: Macrocyclic chemistry: current trend and future perspectives. J. Anal. Chem. 61(8), 819–821 (2006)

    Article  CAS  Google Scholar 

  24. Gokel, G.W., Mukhopadhyay, A.: Synthetic models of cation-conducting channels. Chem. Soc. Rev. 30, 274–287 (2001)

    Article  CAS  Google Scholar 

  25. Voyer, N.: Topics in Current Chemistry, pp. 1–35. Springer-Verlag, Berlin, Heidelberg (1996)

    Google Scholar 

  26. Bong, D.T., Clark, T.D., Granja, J.R., Ghadiri, M.R.: Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 40(6), 988–1011 (2001)

    Article  CAS  Google Scholar 

  27. Eggers, P.K., Fyles, T.M., Mitchell, K.D.D., Sutherland, T.: Ion channels from linear and branched bola-amphiphiles. J. Org. Chem. 68(3), 1050–1058 (2003)

    Article  CAS  Google Scholar 

  28. Barboiu, M., Vaughan, G., van der Lee, A.: Self-organized heteroditopic macrocyclic superstructures. Org. Lett. 5(17), 3073–3076 (2003)

    Article  CAS  Google Scholar 

  29. Barboiu, M.: Supramolecular polymeric macrocyclic receptors - hybrid carrier vs. channel transporters in bulk liquid membranes. J. Incl. Phenom. Mol. Rec. 49, 133–137 (2004)

    Article  CAS  Google Scholar 

  30. Barboiu, M, Cerneaux, S., Vaughan, G., van der Lee, A.: Ion-driven atp pump by self-organized hybrid membrane materials. J. Am. Chem. Soc. 126(11), 3545–3550 (2004)

    Article  CAS  Google Scholar 

  31. Barboiu, M.: Dynamic supramolecular materials. Paper Presented at European Young Investigator Awardees Symposium EURYIAS2006, ISIS-ULP, Strasbourg, France, 29 Nov–2 Dec, 2006

  32. Gokel, G.W.: Crown Ethers and Cryptands. The Royal Society of Chemistry, Cambridge (1991)

    Google Scholar 

  33. Gokel, G.W.: Lariat ethers: from simple sidearms to supramolecular systems. Chem. Soc. Rev. 21, 39–49 (1992)

    Article  CAS  Google Scholar 

  34. Gatto, V.J. Gokel, G.W.: Syntheses of calcium-selective, substituted diaza-crown ethers: a novel, one-step formation of bibracchial lariat ethers (BiBLES). J. Am. Chem. Soc. 106(26), 8240–8244 (1984)

    Article  CAS  Google Scholar 

  35. Esteban, D., Banobre D., Bastida R., de Blas, A., Macias A., Rodriguez, A., Rodriguez-Blas, T., Fenton, D.E., Adams, H., Mahia, J.: Barium templating schiff-base lateral macrobicycles. Inorg. Chem. 38(8), 1937–1944 (1999)

    Article  CAS  Google Scholar 

  36. Esteban, D., Banobre, D., de Blas, A., Rodriguez-Blas, T., Bastida, R., Macias, A., Rodriguez, A., Fenton, D.E., Adams, H., Mahia, J.: Cadmium(II) and lead(II) complexes with novel macrocyclic receptors derived from 1,10-Diaza-15-crown-5. Eur. J. Inorg. Chem. 7, 1445–1456 (2000)

    Article  Google Scholar 

  37. Rodriguez-Infante, C., Esteban, D., Avecilla, F., de Blas, A., Rodriguez-Blas, T., Mahia, J., Macedo, A.L., Geraldes, C.F.G.C.: Copper complexes with bibracchial lariat ethers: from mono- to binuclear structures. Inorg. Chim. Acta 317, 190–198 (2001)

    Article  CAS  Google Scholar 

  38. Platas, C., Avecilla, F., de Blas, A., Rodriguez-Blas, T., Bastida, R., Macias, A., Rodriguez, A., Adams, H.: A Schiff-base bibracchial lariat ether selective receptor for lanthanide(III) ions. J. Chem. Soc., Dalton Trans. 1699–1705 (2001)

  39. Gonzalez-Lorenzo, M., Platas, C., Avecilla, F., Geraldes, C.F.G.C., Imbert, D., Bunzli, J.-C.G., de Blas, A., Rodriguez-Blas, T.: A Schiff-base bibracchial lariat ether forming a cryptand-like cavity for lanthanide ions. Inorg. Chem. 42(21), 6946–6954 (2003)

    Article  CAS  Google Scholar 

  40. Esteban, D., Ferreiros, R., Fernandez-Martinez, S., Avecilla, F., Platas, C., de Blas, A., Rodriguez-Blas, T.: Lateral macrobicyclic architectures: toward new lead(II) sequestering agents. Inorg. Chem. 44(15), 5428–5436 (2005)

    Article  CAS  Google Scholar 

  41. Esteban, D., Avecilla, F., Platas, C., Mahia, J., de Bals, A., Rodriguez-Blas, T.: Lead(II) complexes with macrocyclic receptors derived from 4,13-Diaza-18-crown-6. Inorg. Chem. 41(17), 4337–4347 (2002)

    Article  CAS  Google Scholar 

  42. Buschmann, H.-J., Schollmeyer, E., Trultzsch, R., Beger, J.: Complexation of silver(I) with different substituted diaza-18-crown-6 ethers in methanol. J. Trans. Met. Chem. 27(3), 295–298 (2002)

    Article  CAS  Google Scholar 

  43. Gokel, G.W., Korzeniwski, S. H.: Macrocyclic Polyether Syntheses. Springer, Berlin (1982)

    Google Scholar 

  44. Nakatsuji, Y., Nakamura, T., Yometani, M., Yuya, H., Okahara, M.: molecular design of the electron-donating sidearm of lariat ethers: effective coordination of the quinoline moiety in complexation toward alkali-metal cations. J. Am. Chem. Soc. 110(2), 531–538 (1988)

    Article  CAS  Google Scholar 

  45. Sil, A., Vijaykumar, S.I., Srivastava, A.K.: Stability constants of some macrocyclic complexes of Ag(I) and Cu(II) in mixed solvents by potentiometry. Supramol. Chem. 15(6), 451–457 (2003)

    Article  CAS  Google Scholar 

  46. Buschmann, H.-J., Hermann, J., Kaupp, M., Plenio, H.: The coordination chemistry of the CF group of fluorocarbons: thermodynamic data and Ab initio calculations on CF ± metal ion interactions. Chem. Eur. J. 5(9), 2566–2572 (1999)

    Article  CAS  Google Scholar 

  47. Pouretedal, H.D., Shamsipur, M.: Competitive potentiometric study of complexation of some organoammonium ions with selected crown ethers in ethanol solution using Ag+ ion as a probe. J. Chem. Eng. Data 43(5), 742–744 (1998)

    Article  CAS  Google Scholar 

  48. Buschmann, H.J., Cleve, E., Torkler, S., Schollmeyer, E.: The determination of complex stabilities with nearly insoluble host molecules. Complexation of barium(II) with substituted diaza-18-crown-6 ligands in aqueous and methanolic solutions. Talanta 51, 145–149 (2000)

    Article  CAS  Google Scholar 

  49. Zolgharnein, J., Azimi, G., Habibi, M.: Competitive potentiometric study of a series of 18-crown-6 with Pb2+, Ag+, and Tl+ions in methanol using Ag+/Ag electrode. Pol. J. Chem. 78(6), 795–802 (2004)

    CAS  Google Scholar 

  50. Sil, A., Srivastava, A.K.: Studies on the complexation of transition metal ions with macrocyclic compounds in mixed solvents by competitive potentiometry and polarography. Supramol. Chem. 16(5), 343–351 (2004)

    Article  CAS  Google Scholar 

  51. Caridade, C.J.M., Rodrigues, P.M.S.: Complexation study of alkali metal ions by crown ether derivatives in nonaqueous solvents by potentiometric methods. Port. Electrochim Acta. 20, 167–178 (2002)

    Article  Google Scholar 

  52. Shamsipur, M., Zolgharnein, J.: Competitive potentiometric study of the thermodynamics of complexation of some transition and heavy metal ions with Dibenzopyridino-18-crown-6 in methanol using Ag+ ion as a probe. J. Incl. Phenom. Macro. Chem. 40(1–2), 41–44 (2001)

    Article  CAS  Google Scholar 

  53. Funasaki, N., Nagaoka, M., Hirota, S.: Competitive potentiometric determination of binding constants between α-cyclodextrin and 1-alkanols. Anal. Chim. Acta 531(1), 147–151 (2005)

    Article  CAS  Google Scholar 

  54. Luca, C., Enea, O.: Determinarea constantelor analitice. Metode electrometrice si optice. Ed. Didactica si Pedagogica, Bucuresti, p. 24 (1971)

  55. Badescu, V.R., Luca, C.: The determination of the β M stability constants for the UO 2+2 , Pb2+, Cd2+, Cu2+, Ba2+, Sr2+ cryptates with the Hexaoxa-diazabicyclohexacosan (222) cryptand. Rev. Chim.—SChR 57(9), 915–918 (2006)

    CAS  Google Scholar 

  56. Arnaud-Neu, F., Spiess, B., Schwing-Weill, M.J.: Solvent effects in the complexation of [2]-cryptands and related monocycles with transition- and heavy-metal cations. J. Am. Chem. Soc. 104(21), 5641–5645 (1982)

    Article  CAS  Google Scholar 

  57. Zolgharnein, J., Tahmasebi, H., Habibi, M., Amani, S.: Complexation study of alkali metal ions by crown ether derivatives in nonaqueous solvents by potentiometric methods. J. Incl. Phenom. Macroc. Chem. 49, 231–234 (2004)

    Article  CAS  Google Scholar 

  58. Frensdorff, H.K.: Stability constants of cyclic polyether complexes with univalent cations. J. Am. Chem. Soc. 93(3), 600–606 (1971)

    Article  CAS  Google Scholar 

  59. Kolthoff, I.M.: Application of macrocyclic compounds in chemical analysis. Anal. Chem. 51(5), 1R–22R (1979)

    Article  CAS  Google Scholar 

  60. Rodopoulos, T., Pittet, P.-A., Lincoln, S.F.: Complexation of monovalent metal ions by lariat ethers in non-aqueous solvents. J. Chem. Soc. Dalton Trans. 7, 1055–1060 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This work, conducted as part of the award “Dynamic Adaptative Materials for Separation and Sensing Microsystems” made under the European Heads of Research Councils and European Science Foundation EURYI (European Young Investigator) Awards scheme in 2004, was supported by funds from the Participating Organisations of EURYI and the EC Sixth Framework Programme. See http://www.esf.org/euryi

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail Barboiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tar, A., Barboiu, M., Legrand, YM. et al. Stability constants of complexes formed by new Schiff-base lariat ethers derived from 4,13-diaza-18-crown-6 with Ag+, Pb2+, Cu2+ cations determined by competitive potentiometry. J Incl Phenom Macrocycl Chem 60, 35–41 (2008). https://doi.org/10.1007/s10847-007-9349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9349-5

Keywords

Navigation