Skip to main content
Log in

Production of 2-O-α-glucopyranosyl l-ascorbic acid from ascorbic acid and β-cyclodextrin using immobilized cyclodextrin glycosyltransferase

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclodextrin glycosyltransferase (CGTase) isolated and purified from Paenibacillus sp. A11 was immobilized on various carriers by covalent linkage using bifunctional agent glutaraldehyde. Among tested carriers, alumina proved to be the best carrier for immobilization. The effects of several parameters on the activation of the support and on the immobilization of enzyme were optimized. The best preparation of immobilized CGTase retained 31.2% of its original activity. After immobilization, the enzymatic properties were investigated and compared with those of the free enzyme. The optimum pH of the immobilized CGTase was shifted from 6.0 to 7.0 whereas optimum temperature remained unaltered (60°C). Free and immobilized CGTase showed similar pH stability profile but the thermal stability of the immobilized CGTase was 20% higher. Kinetic data (K M and V max) for the free and immobilized enzymes were determined from the rate of β-CD formation and it was found that the immobilized form had higher K M and lower V max. The immobilized CGTase also exhibited higher stability when stored at both 4°C and 25°C for 2 months. The enzyme immobilized on alumina was further used in a batch production of 2-O-α-glucopyranosyl-l-ascorbic acid (AA-2G) from ascorbic acid and β-cyclodextrin. The yield of AA-2G was 2.92% and the immobilized CGTase retained its activity up to 74.4% of the initial catalytic activity after being used for 3 cycles. The immobilized CGTase would have a promising application in the production of various transglycosylated compounds and in the production of cyclodextrin by the hydrolysis of starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

AA-2G:

2-O-α-glucopyranosyl-l-ascorbic acid

AANa:

l-Ascorbic acid sodium salt

APTS:

Aminopropyltriethoxysilane

CD:

Cyclodextrin

CGTase:

Cyclodextrin glycosyltransferase

GA:

Glutaraldehyde

References

  1. Tonkova, A.: Bacterial cyclodextrin glucanotransferase. Enzyme Microb. Technol. 22, 678–686 (1998).

    Article  CAS  Google Scholar 

  2. Szejtli, J.: Cyclodextrin Technology. Kluwer, Dordrecht (1988), Chapters 1 and 5.

  3. Kometani, T., Nishimura, T., Nakae, T., Takii, H., Okada, S.: Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species. Biosci. Biotech. Biochem. 60, 645–649 (1996).

    Article  CAS  Google Scholar 

  4. Shibuya, T., Miwa, Y., Nakano, M., Yamauchi, T., Chaen, H., Sakai, S., Kurimoto, M.: Enzymatic synthesis of novel trisaccharide, glucosyl lactoside. Biosci. Biotech. Biochem. 57, 56–60(1993).

    CAS  Google Scholar 

  5. Bae, H.K., Lee, S.B., Park, C.S., Shim, J.H., Lee, H.Y., Kim, M.J., Baek, J.S., Roh, H.J., Choi, J.H., Choe, E.O., Ahn, D.U., Park, K.H.: Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. J. Agric. Food Chem. 50, 3309–3316 (2002).

    Article  CAS  Google Scholar 

  6. Muto, N., Suga, S., Fuji, K., Goto, K., Yamamoto, I.: Formation of a stable ascorbic acid 2-glucoside by specific transglucosylation with rice seed α-glucosidase. Agric. Biol. Chem. 54, 1697–1703 (1990).

    CAS  Google Scholar 

  7. Muto, N., Nakamura, T., Yamamoto, I.: Enzymatic formation of a nonreducing L-ascorbic acid α-glucoside: Purification and properties of a α-glucosidase catalyzing site-specific transglucosylation from rat small intestine. J. Biochem. 107, 222–227 (1990).

    CAS  Google Scholar 

  8. Yamamoto, I., Muto, N., Nagata, E., Nakamura, T., Suzuki, Y.: Formation of a stable L-ascorbic acid α-glucosidase by mammalian α-glucosidase-catalyzed transglucosylation. Biochim. Biophys. Acta 1035, 44–50 (1990).

    CAS  Google Scholar 

  9. Tanaka, M., Muto, N., Yamamoto, I.: Characterization of Bacillus stearothermophilus cyclodextrin glucanotransferase in ascorbic acid 2-O-α-glucoside formation. Biochim. Biophys. Acta. 1078, 127–132 (1991).

    Google Scholar 

  10. Jun, H.K., Bae, K.M., Kim, S.K.: Production of 2-O-α-D-glucopyranosyl L-ascorbic acid using cyclodextrin glucanotransferase for Paenibacillus sp. Biotechnol. Lett. 23, 1793–1797 (2001).

    Article  CAS  Google Scholar 

  11. Kumano, Y., Sakamoto, T., Egawa, M., Tanaka, M., Yamamoto, I.: Enhancing effect of 2-O-α-glucopyranosyl L-ascorbic acid, a stable ascorbic acid derivative, on collagen synthesis. Biol. Pharm. Bull. 21, 662–666 (1998).

    CAS  Google Scholar 

  12. Wakamiya, H., Suzuki, E., Yamamoto, I., Akiba, M., Otsuka, M., Arakawa, N.: Vitamin C activity of 2-O-α-glucopyranosyl L-ascorbic acid in guinea pigs. J. Nutr. Sci. Vitaminol. 38, 235–245 (1992).

    CAS  Google Scholar 

  13. Yamamoto, I., Muto N.: Bioavailability and biological activity of L-ascorbic acid 2-O-α-glucoside. In: Proceeding of the 1st International Congress on Vitamins and Biofactors in Life Science in Kobe, 1991. J. Nutr. Sci. Vitaminol. Special Issue, 161–164 (1992).

  14. Yamamoto, I., Suga, S., Mitoh, Y., Tanaka, M., Muto, N.: Antiscorbutic activity of L-ascorbic acid 2-glucoside and its availability as a vitamin C supplement in normal rats and guinea pigs. J. Pharmacobio. Dyn. 13, 688–695 (1990).

    CAS  Google Scholar 

  15. Kato, T., Horikoshi, K.: Immobilized cyclodextrin glucanotransferase of an alkalophilic Bacillus sp. No. 38-2. Biotechnol. Bioeng. 24, 595–598 (1984).

    Article  Google Scholar 

  16. Lee, S.H., Shin, H.D., Lee, Y.H.: Evaluation of the immobilization methods for cyclodextrin glucanotransferase and characterization of its enzymatic properties. J. Microbiol. Biotechnol. 1, 54–62 (1991).

    CAS  Google Scholar 

  17. Abdel-Naby, M.: Immobilization of Paenibacillus macerans NRRL B-3186 cyclodextrin glucosyltransferase and properties of the immobilized enzyme. Process Biochem. 34, 399–405 (1999).

    Article  CAS  Google Scholar 

  18. Martin, M.T., Plou, F.J., Alcalde, M., Ballesteros, A.: Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst. J. Mol. Catal. B: Enzym. 21, 299–308 (2003).

    Article  CAS  Google Scholar 

  19. Choi, S.H., Kim, M.S., Ryoo, J.J., Lee, K.P., Shin, H.D., Kim, S.H., Lee, Y.H.: Immobilization of a cyclodextrin glucanotransferase (CGTase) onto polyethylene film with a carboxylic acid group and production of cyclodextrins from corn starch using CGTase immobilized PE film. J. Appl. Polym. Sci. 85, 2451–2457 (2002).

    Article  CAS  Google Scholar 

  20. Sobral, K.A., Rodrigues, R.O., Oliveira, R.D., deMoraes, F., Zanin, G.M.: Evaluation of supports and methods for immobilization of enzyme cyclodextrin glycosyl transferase. Appl. Biochem. Biotechnol. 105–108, 809–819 (2003).

    Article  Google Scholar 

  21. Pongsawasdi, P., Yagisawa, M.: Screening and identification of a cyclomaltodextrin glucanotransferase producing bacteria. J. Ferment. Technol. 65, 463–467 (1987).

    Article  CAS  Google Scholar 

  22. Horikoshi, K.: Production of alkaline enzymes by alkalophilic microorganisms. Agric. Biol. Chem. 35, 1783–1791 (1971).

    CAS  Google Scholar 

  23. Weetal, H.H.: Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Appl. Biochem. Biotechnol. 41, 157–188 (1993).

    Article  Google Scholar 

  24. Bradford, M.M.: A rapid and sensitive method for the quantitatively of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  25. Chibata, I.: Properties of immobilized enzymes and microbial cells III. In: Chibata, I. (ed.) Immobilized Enzymes, pp. 108–147. Halsted Press, New York (1978).

  26. Yang, C.P., Su, C.S.: Study of cyclodextrin production using cyclodextrin glycosyltransferase immobilized on chitosan. J. Chem. Technol. Biotechnol. 46, 283–294 (1989).

    Article  CAS  Google Scholar 

  27. Aga, H., Yoneyama, M., Sakai, S., Yamamoto, I.: Synthesis of 2-O-α-Dglucopyranosyl L-ascorbic acid by cyclodextrin glucanotransferase from Bacillus stearothermophilus. Agric. Biol. Chem. 55, 1751–1756 (1991).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Starch and Cyclodextrin Unit Cell, Chulalongkorn University (Bangkok, Thailand). We are grateful to Dr. Rath Pichayankura for providing chitosan used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manchumas Hengsakul Prousoontorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prousoontorn, M.H., Pantatan, S. Production of 2-O-α-glucopyranosyl l-ascorbic acid from ascorbic acid and β-cyclodextrin using immobilized cyclodextrin glycosyltransferase. J Incl Phenom Macrocycl Chem 57, 39–46 (2007). https://doi.org/10.1007/s10847-006-9163-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9163-5

Keywords

Navigation