Skip to main content
Log in

Alkali Metal- and Ammonium Picrate Extraction and Complex Forming Capabilities of d-Glucose and d-Mannose-based Lariat Ethers

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

ABSTRACT

The alkali metal- and ammonium picrate extracting ability of d-glucose- and d-mannose-based 15-crown-5 ethers and related lariat ethers was investigated in dichloromethane – water system. A heteroatom was waried in the crown ether containing a 4,6-O-benzylidene-α-d-glucopyranoside unit 6, (X=O), 2 (X=S) and 8a (X=NH). Extracting ability of the latter species (8a) was excellent (97–99%) in regard of all cations (Li+, Na+, K+, Rb+, Cs+ and NH +4 ) examined, it was not, howewer, selective. Introduction of a side arm on the nitrogen atom of 8a decreased the extracting ability, but increased the selectivity. In this series of compounds (8bf, 4), 4 with a pyridylethyl substituent allowed the extraction of sodium picrate in 72%. The glucose-based macrocycles 8a, 8e and 8f formed a stronger complex with the cations examined than the mannose-based analogues 9a, 9e and 9f, that can be explained by the all-gauche conformation of the former ones. It was pointed out that in the case of crowns with tertiary amine moieties, the basicity increases the quantity of the picrates extracted. According to complex forming measurements by FAB-MS, the best sodium ion selectivity was achieved by the γ-hydroxypropyl substituted lariat ether (8e). Possible structures of the complexes formed by the two types of monosacharides with sodium cation were evaluated by molecule modelling calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Weber: In S. Patai and Z. Rappoport (eds.), Crown Ethers And Analogs. Wiley-Interscience, Chapter 4, New York (1989), pp. 305–319, (and references cited therein)

  2. Izatt R.M., Pawlak K., Bradshaw J.S., (1995) Chem. Rev. 95: 2529

    Article  CAS  Google Scholar 

  3. Gokel G.W., (1992) Chem. Soc. Rev. 21: 39

    Article  CAS  Google Scholar 

  4. Davison R.B., Izatt R.M., Christensen J.J., Schultz R.A., Dishong D.M., Gokel G.W., (1984) J. Org. Chem. 49: 5080

    Article  Google Scholar 

  5. Adamic R.J., Eyring E.M., Petrucci S., Bartsch R.A., Pugia M.J., Knudsen B.E., Liu Y., Desai D.H., (1986) J. Phys. Chem. 90: 6571

    Article  CAS  Google Scholar 

  6. J.F. Stoddart: In E.L. Eliel and S.H. Wielen (eds.), Topics in Stereochemistry, Vol. 17, Wiley (1988), p. 207

  7. Miethchen R., Fehring V., (1998) Synthesis 94

  8. Bakó P., Czinege E., Bakó T., Czugler M., Tőke L., (1999) Tetrahedron: Asymmetry 10:4539 (and references cited therein)

    Article  Google Scholar 

  9. Itoh T., Shirakami S., (2001) Heterocycles 55: 37

    Article  CAS  Google Scholar 

  10. J.F. Stoddart: In R.M. Izatt and J.J. Christensen (eds.), Progress in Macrocycles Chemistry, Vol. 2, Wiley (1981), pp. 173–250

  11. Bakó P., Tőke L., (1995) J. Incl. Phenom. 23: 195

    Article  Google Scholar 

  12. Bakó P., Makó A., Keglevich Gy., Kubinyi M., Krisztina P., (2005) Tetrahedron: Asymmetry 16: 1861

    Article  CAS  Google Scholar 

  13. Bakó P., Szöllősy Á., Bombicz P., Tőke L., (1997) Synlett 29

  14. Bakó P., Bajor Z., Tőke L., (1999) J. Chem. Soc. Perkin Trans 1. 24: 3651

    Article  Google Scholar 

  15. Bakó T., Bakó P., Szöllősy Á., Czugler M., Keglevich Gy., Tőke L., (2002) Tetrahedron: Asymmetry 13: 203

    Article  Google Scholar 

  16. Bakó P., Bakó T., Mészáros A., Keglevich Gy., Szöllősy Á., Makó A., Bodor S., Tőke L., (2004) Synlett 643

  17. Marchand A.P., McKim A.S., Kumar K.A., (1998) Tetrahedron 54: 13421

    Article  CAS  Google Scholar 

  18. Kumar S., Kaur N., Singh H., (1996) Tetrahedron 52: 13483

    Article  CAS  Google Scholar 

  19. Elshani S., Kobzar E., Bartsch R.A., (2000) Tetrahedron 56: 3291

    Article  CAS  Google Scholar 

  20. Marchand A.P., Chong H.-S., (1999) Tetrahedron 55: 9697

    Article  CAS  Google Scholar 

  21. Johnstone R.A.W., Lewis I.A.S., Rose M.E., (1983) Tetrahedron 39:1597

    Article  CAS  Google Scholar 

  22. Stibor I., Holy P., Závada J., Koudelka J., Novák J., Zajícek J., Belohradsky M., (1990) J. Chem. Soc. Chem. Commun. 1581

  23. Tsukube H., Inoue T., Hori K., (1994) J. Org. Chem. 59: 8047

    Article  CAS  Google Scholar 

  24. Hain W., Lehnert R., Röttele H., Schrőder G., (1978) Tetrahedron Lett. 7: 625

    Article  Google Scholar 

  25. Bakó P., Kiss T., Tőke L., (1997) Tetrahedron Lett. 38: 7259

    Article  Google Scholar 

  26. Kimura K., Maeda T., Shono T., (1979) Talanta 26: 945

    Article  CAS  Google Scholar 

  27. CompuDrug, International Institute, Sedone, USA

  28. Chang G., Guida W.C., Still W.C., (1989) J. Am. Chem. Soc. 111: 4379

    Article  CAS  Google Scholar 

  29. Mohamadi F., Richards N.G.J., Guida W.C., Liskamp R., Lipton M., Caufield C., Chang G., Hendrikson T., Still W.C., (1990) J. Comput. Chem. 11: 440

    Article  CAS  Google Scholar 

  30. Halgren T.A., (1996) J. Comput. Chem. 17: 490

    Article  CAS  Google Scholar 

  31. Halgren T.A., (1999) J. Comput Chem. 20: 720

    Article  CAS  Google Scholar 

  32. Weiner S.J., Kollman P.A., Case D.A., Singh U.C., Ghio C., Alagona G., Profeta S., Weiner P., (1984) J. Am. Chem. Soc. 106: 765

    Article  CAS  Google Scholar 

  33. Woods R.J., Khalil M., Pell W., Moffat S.H., Smith Jr. V.H., (1990) J. Comput. Chem. 11: 297

    Article  CAS  Google Scholar 

  34. Still W.C., Tempczyk A., Hawley R.C., Hendrickson T., (1990) J. Am. Chem. Soc. 112: 6127

    Article  CAS  Google Scholar 

  35. Schalley C.A., (2001) Mass Spectrom. Rev. 20: 253

    Article  PubMed  CAS  Google Scholar 

  36. J.S. Brodbelt and D.V. Dearden: In J.L. Atwood, J.E.D. Davies, D.D. MacNicol, F. Vögtle, and J-M. Lehn (eds.), Comprehensive Supramolecular Chemistry, Vol. 8, Pergamon Press, Oxford (1996), pp. 567–591

  37. D.V. Dearden: In L. Echegoyen, A.E. Kaiser (eds.), Physical Supramolecular Chemistry, Kluwer Academic Publishers, Dordrecht (1996), pp. 229–247

  38. Armentrout P.B., (1999) Int. J. Mass Spectrom. 193:227

    Article  CAS  Google Scholar 

  39. Fronczek F.R., Gatto V.J., Minganti C., Schultz R.A., Gandour R.D., Gokel G.W., (1984) J. Am. Chem. Soc. 106: 7244

    Article  CAS  Google Scholar 

  40. Goubitz K., Reiss C.A., Heijdenrijk D., (1990) Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 46: 1087

    Article  Google Scholar 

  41. Hu J., Barbour L.J., Ferdani R., Gokel G.W., (2002) Chem. Commun. 1810

  42. Weber G., Sheldrick G.M., Dix J.P., Vögtle F., (1980) Cryst. Struct. Commun. 9: 1157

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by OTKA T 42514, T 042933 and the joint founds from the European Union and the Hungarian State (GVOP-3.2.2.-2004-07-0006/3.0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PÉTER BAKÓ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BAKÓ, P., MAKÓ, A., KEGLEVICH, G. et al. Alkali Metal- and Ammonium Picrate Extraction and Complex Forming Capabilities of d-Glucose and d-Mannose-based Lariat Ethers. J Incl Phenom Macrocycl Chem 55, 295–302 (2006). https://doi.org/10.1007/s10847-006-9051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9051-z

KEY WORDS:

Navigation