Skip to main content
Log in

Sorption of Cadmium from Aqueous Solutions at Different Temperatures by Mexican HEU-type Zeolite Rich Tuff

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Many factors may affect the heavy metals sorption on natural zeolites among them the temperature, for this reason in this paper the cadmium retention behavior on Mexican zeolitic rich tuff as a function of temperature is considered. The kinetic and the isotherms were determined at 303, 318, and 333 K, the remaining cadmium in the solution samples was analyzed by atomic absorption spectrometry. The pseudo-second order rate constant, k, as well as the apparent diffusion coefficients were calculated from the cadmium uptake by the zeolitic rock as a function of the contact time and temperature, the highest amounts were found for the experiments done at 333 K. The maximum cadmium adsorption capacity by the zeolitic material was 12.2 mg Cd2+/g at 318 K corresponding to 20% of the effective ion exchange capacity of the Chihuahua zeolitic rock. In order to explain the cadmium sorption behavior different kinetics and isotherm models were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO (World Health Organization): Evaluation of certain food additives and the contaminants mercury, lead, and cadmium. Sixteenth Report of the Join FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series No. 505, FAO Nutrition Meetings Report Series No. 51. Geneva, Switzerland (1972)

  2. http://www.inchem.org/documents/jecfa/jecmono/vo24je09.htm

  3. http://www.osha.gov/SLTC/cadmium/Index.html

  4. WHO (World Health Organization): Guidelines for Drinking Water Quality – Recommendations, vol. 1, Geneva, Switzerland (1984)

  5. U.S. EPA: Drinking Water Criteria Document on Cadmium. Office of Drinking Water, Washington, DC (1985) (final draft)

  6. C. Elinder, L. Friberg, T. Kjellström, 1994 Biological Monitoring of Metals Geenet USA 1–3

    Google Scholar 

  7. NOM-002-ECOL-1996: Límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales, Secretaría del Medio ambiente, Recursos Naturales y Pesca, México (1996)

  8. S.M. Manahan, (1994) Environmental Chemistry Lewis Publishers Michigan USA pp. 173–207

    Google Scholar 

  9. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, Water Res. 33:2469(1999)

    Article  CAS  Google Scholar 

  10. D.C.K. Ko, J.F. Porter, G. Mckay, (2001) Water Res. 35:3876

    Article  CAS  Google Scholar 

  11. E. A. Delyanni, D.N. Bakoyannakis, A.I. Zouboulis, E. Peleka, (2003)Sep. Sci. Technol.38:3967

    Article  Google Scholar 

  12. F. Arellano, I. García-Sosa, M. Solache-Ríos, (1995) J. Radioanal. Nucl. Chem. Lett. 199:107

    Article  CAS  Google Scholar 

  13. S. Kesraoul-Ouki, C. Cheeseman, R. Perry, (1993) Environ. Sci. Technol. 27:1108

    Article  Google Scholar 

  14. I. García-Sosa, M. Solache-Ríos, (1997) J. Radioanal. Nucl. Chem. 218:77

    Article  Google Scholar 

  15. L. Curkovic, S.S. Cerjan, T. Filipan, (1997) Water Res. 31:1379

    Article  CAS  Google Scholar 

  16. D.S. Coombs, A. Alberti, T. Armbruster, G. Artioli, C. Collela, E. Galli, J.D. Grice, F. Liebau, J.A. Mandarino, H. Minato, E.H. Nickel, E. Passaglia, D.R. Peacor, S. Quartieri, R. Rinaldi, M. Ross, R. Sheppard, E. Tillmanns, and G. Vezzalini: Can. Mineral. 35, 1571 (1997)

    Google Scholar 

  17. F. Özkan, G. Gündüz, O. Akpolat, N. Besün, D.Y. Murzin, (2003) J. Chem. Eng. 91:257

    Article  Google Scholar 

  18. T.K. Katranas, A.G. Vlessidis, V.A. Tsiatouras, K.S. Triantafyllidis, N.P. Evmiridis, (2003) Micropor. Mesopor. Mater. 61:189

    Article  CAS  Google Scholar 

  19. O. Akpolat, G. Gündüz, F. Ozkan, N. Besün, (2004) Appl. Catal. A: Gen. 265:11

    Article  CAS  Google Scholar 

  20. G.V. Tsitsishvili, T.G. Andronikashrili, G.N. Kirov, L.D. Filizova, 1992 Natural Zeolites Ellis Horwood Limited England

    Google Scholar 

  21. L.E. Ortiz, (2001) Criterios y especificaciones concernientes a la exploración y valoración de minerales zeolíticos en la República Mexicana Gerencia de Recursos Mineros, Recursos Minerales México pp. 10–11

    Google Scholar 

  22. F.M. Ostroumov, L.E. Ortiz, and C.P. Corona: Zeolitas de México: Diversidad mineralógica y aplicaciones, Sociedad Mexicana de Mineralogía, México (2002) pp. 1–6

  23. S. Babel, T.A. Kurniawan, (2003) J. Hazard. Mater. 97:219

    Article  CAS  Google Scholar 

  24. A. Langella, M. Pansini, P. Cappelletti, B. de Gennaro, M. de’ Gennaro, C. Colella, (2000) Micropor. Mesopor. Mater. 37:337

    Article  CAS  Google Scholar 

  25. V.O. Vasylechko, G.V. Gryshchouk, Y.B. Kuz’ma, V.P. Zakordonskiy, L.O. Vasylechko, L.O. Lebedynets, M.B. Kalytovs’ka, (2003) Micropor. Mesopor. Mater. 60:183

    Article  CAS  Google Scholar 

  26. A. Cincotti, N. Lai, R. Orrú, G. Cao, (2001) Chem. Eng. J. 84:275

    Article  CAS  Google Scholar 

  27. E. Malliou, M. Loizidou, N. Spyrellis, (1994) Sci. Total Environ. 149:139

    Article  CAS  Google Scholar 

  28. M. Loizidou and R.P. Townsend: J. Chem. Soc., Dalton Trans. 1911 (1987)

  29. M. Culfaz, M. Yagiz, (2004) Sep. Purif. Technol. 37:93

    Article  CAS  Google Scholar 

  30. H. Faghihian, M.M. Ghannadim, H. Kazemian, (1999) Appl. Radiat. Isot. 50:655

    Article  CAS  Google Scholar 

  31. M.B. Vaca, C.R. López, R. Gehr, C.B. Jiménez, B.E. Jiménez, J.J.P. Álvarez, (2001) Water Res. 35:373

    Article  Google Scholar 

  32. R. Petrus, J. Warchol, (2003) Micropor. Mesopor. Mater. 61:137

    Article  CAS  Google Scholar 

  33. R. Petrus, J.K. Warchoł, (2005) Water Res. 39:819

    Article  CAS  Google Scholar 

  34. M.J. Jiménez Cedillo: Bachelor Thesis, Universidad Autónoma del Estado de México (2005)

  35. S. Lagergren, K.Sv.Vet.akad.handl. 24, 39 (1898) in: T. Mathialagan and T. Viraraghavan: Sep. Sci. Technol. 38, 57 (2003)

  36. Y.S. Ho, J.C.Y. Ng, G. Mckay, (2001) Sep. Sci. Technol. 36:241

    Article  CAS  Google Scholar 

  37. C.W. Cheung, J.F. Porter, G. McKay, (2000) J. Chem. Technol. Biotechnol. 75:963

    Article  CAS  Google Scholar 

  38. D. Breck, Zeolite Molecular Sieves Wiley Interscience Pub. USA (1973)

    Google Scholar 

  39. M. Stanley, (1998) An Introduction to Mass and Heat Transfer, Principles of Analysis and Design John Wiley & sons, Inc. New York, USA

    Google Scholar 

  40. F.L. Slejko, Adsorption Technology: A Step-Step Approach to Process Evaluation and Application Marcel-Decker Inc. USA (1985)

    Google Scholar 

  41. F.A. Mumpton, O.W. Clayton, (1976) Clays Clay Min. 24:1

    Article  CAS  Google Scholar 

  42. I. Puigdomenech, Program MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms), http://www.inorg.Kth.se/Ignasi/Index.html)

  43. R. Cortés-Martínez, V. Martínez-Miranda, M. Solache-Ríos, I. García-Sosa, (2004) Sep. Sci. Technol. 39:2711

    Article  Google Scholar 

  44. J.I. Dávila-Rangel, M. Solache-Ríos, and V.E. Badillo-Almaraz: J. Radioanal. Nucl. Chem. 267, 139 (2006)

    Google Scholar 

  45. Y.S. Ho, W.T. Chiu, Y.C. Hsu, C.T. Huang, (2004) Hydrometallurgy 73:55

    Article  CAS  Google Scholar 

  46. Y.S. Ho, C.C. Chiang, Y.C. Hsu, (2001) Sep. Sci. Technol. 36:2473

    Article  CAS  Google Scholar 

  47. R.L. Tseng, F.C. Wu, R.S. Juang, (2003) Carbon 41:487

    Article  CAS  Google Scholar 

  48. C.W. Cheung, J.F. Porter, G. McKay, (2001) Water Res. 35:605

    Article  CAS  Google Scholar 

  49. C. Lao, Z. Zeledón, X. Gamisans, M. Solé, (2005) Sep. Purif. Technol. 45:79

    Article  CAS  Google Scholar 

  50. M. Pesavento, A. Profumo, G. Alberti, F. Conti, (2003) Anal. Chim. Acta 480:171

    Article  CAS  Google Scholar 

  51. A. Godelitsas, T. Armbruster, (2003) Micropor. Mesopor. Mater. 61:3

    Article  CAS  Google Scholar 

  52. J. Stolz, P. Yang, T. Armbruster, (2000) Micropor. Mesopor. Mater. 37:233

    Article  CAS  Google Scholar 

  53. N. Doebelin, T. Armbruster, (2003) Micropor. Mesopor. Mater. 61:85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from CONACyT, project 46219 and we thank L. Carapia and the technicians of the Chemistry Department (ININ) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solache-Ríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arámbula-Villazana, V., Solache-Ríos, M. & Olguín, M.T. Sorption of Cadmium from Aqueous Solutions at Different Temperatures by Mexican HEU-type Zeolite Rich Tuff. J Incl Phenom Macrocycl Chem 55, 229–236 (2006). https://doi.org/10.1007/s10847-005-9040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-005-9040-7

Keywords

Navigation