Skip to main content
Log in

An immune system based algorithm for cell formation problem

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Technological developments enable the design and manufacturing of products tailored to individual consumers. Cellular Manufacturing Systems (CMS) can be considered as to ease flexibility, to reduce setup time, throughput time, work-in-process inventories, and material handling costs. Cell formation problem (CFP) that is one of the critical CMS design problems is the assignment of parts and machines to specific cells based on their similarity. This study introduces a Clonal Selection Algorithm (CSA) with a novel encoding structure that is efficient to solve real-sized problems. Unlike the methods in literature that define the number of cells as a constant number, this algorithm is significant because it can obtain the optimum number of cell to generate best efficacy value. Proposed CSA is tested by using 67 (35 well-known and 32 less-known) test problems. CSA obtains the same 63 best-known optimal solutions, provides solutions for the 3 of the well-known test problem and a new solution for the largest test problem (50 machine 150 part) that was not possible to be solved by the mixed integer linear programming model due to the high computational complexity. Final CSA grouping results are illustrated with figures to attract attention to the singleton and residual cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adil, G. K., Rajamani, D., & Strong, D. (1996). Cell formation considering alternate routings. International Journal of Production Research, 34(5), 1361–1380.

    Google Scholar 

  • Arkat, A., Hosseini, L., & Hosseinabadi, F. M. (2011). Minimization of exceptional elements and voids in the cell Formation problem using a multi-objective genetic algorithm. Expert Systems with Applications, 38, 9597–9602.

    Google Scholar 

  • Arvindh, B., & Irani, S. A. (1994). Cell formation: The need for an integrated solution of the sub problem. International Journal of Production Research, 32(5), 1197–1218.

    Google Scholar 

  • Askin, R. G., & Subramanian, S. (1987). A cost-based heuristic for group technology configuration. International Journal of Production Research, 25, 101–113.

    Google Scholar 

  • Boctor, F. A. (1991). Linear formulation of the machine-part cell formation problem. International Journal of Production Research, 29(2), 343–356.

    Google Scholar 

  • Boe, W., & Cheng, C. H. (1991). A close neighbor algorithm for designing cellular manufacturing systems. International Journal of Production Research, 29(10), 2097–2116.

    Google Scholar 

  • Brownlee J. (2011). Clever algorithms: Nature-inspired programming recipes. Creative Commons 280, http://www.cleveralgorithms.com/. Last accessed February 2018.

  • Brown, E., & Sumichrast, R. (2001). CF-GGA: a grouping genetic algorithm for the cell formation problem. International Journal of Production Research, 36, 3651–3669.

    Google Scholar 

  • Bychkov, I., & Batsyn, M. (2018). An efficient exact model for the cell formation problem with a variable number of production cells. Computers and Operations Research, 91, 112–120.

    Google Scholar 

  • Bychkov, I. S., Batsyn, M. V., & Pardalos, P. M. (2014). Exact model for the cell formation problem. Optimization Letters, 8(8), 2203–2210.

    Google Scholar 

  • Bychkov, I., Batsyn, M., Sukhov, P., & Pardalos, P. M. (2013). Heuristic algorithm for the cell formation problem. Models, algorithms, and technologies for network analysis. Springer Proceedings in Mathematics & Statistics, 59, 43–69.

    Google Scholar 

  • Carrie, S. (1973). Numerical taxonomy applied to group technology & plant layout. International Journal of Production Research, 11, 399–416.

    Google Scholar 

  • Chandrasekaran, M. P., & Rajagopalan, R. (1986a). An ideal seed nonhierarchical clustering algorithm for cellular manufacturing. International Journal of Production Research, 24, 451–463.

    Google Scholar 

  • Chandrasekaran, M. P., & Rajagopalan, R. (1986b). MODROC: An extension of rank order clustering of group technology. International Journal of Production Research, 24(5), 1221–1233.

    Google Scholar 

  • Chandrasekharan, M. P., & Rajagopalan, R. (1987). ZODIAC: An algorithm for concurrent formation of part-families and machine-cells. International Journal of Production Research, 24(2), 835–850.

    Google Scholar 

  • Chandrasekharan, M. P., & Rajagopalan, R. (1989). Groupability: Analysis of the properties of binary data matrices for group technology. International Journal of Production Research, 27(6), 1035–1052.

    Google Scholar 

  • Chan, H. M., & Milner, D. A. (1982). Direct clustering algorithm for group formation in cellular manufacture. Journal of Manufacturing System, 1, 65–75.

    Google Scholar 

  • Cheng, C., Gupta, Y., Lee, W., & Wong, K. (1998). A TSP-based heuristic for forming machine groups and part families. International Journal of Production Research, 36, 1325–1337.

    Google Scholar 

  • Dasgupta, D., Ji, Z., & Gonzalez, F. (2003). Artificial immune systems research in the last five years. In Proceedings of the 2003 congress on evolutionary computation conference. Canberra. Australia. (pp. 123–130). December 8–13.

  • De Castro, L., & Von Zuben, F. J. (1999). Artificial immune systems: Part I: Basic theory & applications. FEEC Univ. Campnas, Campinas, Brasil, ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/tr_dca/trdca0199.pdf. Last accessed January 2018.

  • Dimopoulos, C., & Mort, N. (2001). A hierarchical clustering methodology based on genetic programming for the solution of simple cell-formation problems. International Journal of Production Research, 39, 1–19.

    Google Scholar 

  • Dimopoulos, C., & Zalzala, A. (2000). Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons. IEEE Transactions on Evolutionary Computatio, 4(2), 93–113.

    Google Scholar 

  • Farahani, M. H., & Hosseini, L. (2011). An ant colony optimization for the machine-part cell formation problem. International Journal of Computational Intelligence Systems, 4, 486–496.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms: Search, optimization and machine learning. Boston, MA: Addison-Wesley Longman Publishing Co. Inc.

    Google Scholar 

  • Goncalves, J. F., & Resende, M. G. C. (2004). An evolutionary algorithm for manufacturing cell formation. Computers and Industrial Engineering, 47, 247–273.

    Google Scholar 

  • Ham I., Hitomi K., & Yoshida T. (1985). Layout planning for group technology. In Group technology. International series in management science/operations research. (pp. 153–169). Dordrecht: Springer.

  • Harhalakis, G., Ioannou, G., Minis, I., & Nagi, R. (1994). Manufacturing cell formation under random product demand. International Journal of Production Research, 32(1), 47–64.

    Google Scholar 

  • Hyer, N., & Wemmerlov, U. (1984). Group technology and productivity. Harvard Business Review, 62(4), 140–149.

    Google Scholar 

  • Islam, K. M. S., & Sarker, B. R. (2000). A similarity coefficient measure and machine parts grouping in cellular manufacturing systems. International Journal of Production Research, 38(3), 699–720.

    Google Scholar 

  • Islier, A. A. (2001). Forming manufacturing cells by using genetic algorithm. Anadolu University Journal of Science and Technology, 2, 137–157.

    Google Scholar 

  • Islier, A. A. (2005). Group technology by ants. International Journal of Production Research, 43(5), 913–932.

    Google Scholar 

  • James, T., Brown, E. C., & Keeling, K. B. (2007). A hybrid grouping genetic algorithm for the cell formation problem. Computers and Operations Research, 34, 2059–2079.

    Google Scholar 

  • Joines, J., Culberth, C. T., & King, R. E. (1996). Manufacturing cell design: an integer programming model employing genetic algorithms. IEE Transactions, 28, 69–85.

    Google Scholar 

  • Kamel, M., Ghenniwa, H., & Liu, T. (1994). Machine assignment and part-families formation using group technology. Journal of Intelligent Manufacturing, 5, 225–234.

    Google Scholar 

  • King, J. R. (1980). Machine-component grouping in production flow analysis: An approach using a rank order clustering algorithm. International Journal of Production Research, 18(2), 213–232.

    Google Scholar 

  • King, J. R., & Nakornchai, V. (1982). Machine-component group formation in group technology: Review and extension. International Journal of Production Research, 20(2), 117–133.

    Google Scholar 

  • Kumar, C. S., & Chandrasekharan, M. P. (1990). Grouping efficacy: A quantitative criterion for goodness of block diagonal forms of binary matrices in group technology. International Journal of Production Research, 28, 233–243.

    Google Scholar 

  • Kumar, K. R., Kusiak, A., & Vannelli, A. (1986). Grouping of parts and components in flexible manufacturing systems. European Journal of Operations Research, 24, 387–397.

    Google Scholar 

  • Kumar, K. R., & Vannelli, A. (1987). Strategic subcontracting for efficient disaggregated manufacturing. International Journal of Production Research, 25(12), 1715–1728.

    Google Scholar 

  • Kusiak, A., & Cho, M. (1992). Similarity coefficient algorithm for solving the group technology problem. International Journal of Production Research, 30, 2633–2646.

    Google Scholar 

  • Kusiak, A., & Chow, W. (1987). Efficient solving of the group technology problem. Journal of Manufacturing Systems, 6(2), 117–124.

    Google Scholar 

  • Lee, H., Malavi, C. O., & Ramachandran, S. (1992). A self-organizing neural network approach for the design of cellular manufacturing systems. Journal of Intelligent Manufacturing, 3, 325–332.

    Google Scholar 

  • Li, M. L. (2003). The algorithm for integrating all incidence matrices in multidimensional group technology. International Journal Production Economics, 86, 121–131.

    Google Scholar 

  • Mahdavi, I., Paydar, M. M., Solimanpur, M., & Heidarzade, A. (2009). Genetic algorithm approach for solving a cell formation problem in cellular manufacturing. Expert Systems with Applications, 36, 6598–6604.

    Google Scholar 

  • Malavi, C. O., & Ramachandran, S. (1991). Neural network-based design of cellular manufacturing systems. Journal of Intelligent Manufacturing, 2, 305–314.

    Google Scholar 

  • McCormick, W. T., Schweitzer, P. J., & White, T. W. (1972). Problem decomposition and data reorganization by a clustering technique. Operations Research, 20, 993–1009.

    Google Scholar 

  • Moon, Y. B. (1992). Establishment of a neurocomputing model for part family/machine group identification. Journal of Intelligent Manufacturing, 3, 173–182.

    Google Scholar 

  • Moon, Y. B., & Chi, S. C. (1992). Generalized part family formation using neural network techniques. Journal of Manufacturing Systems, 11(3), 149–159.

    Google Scholar 

  • Mosier, C. T., & Taube, L. (1985a). The facets of group technology & their impact on implementation. Omega, 13(6), 381–391.

    Google Scholar 

  • Mosier, C. T., & Taube, L. (1985b). Weighted similarity measure heuristics for the group technology machine clustering problem. Omega, 13(6), 577–583.

    Google Scholar 

  • Nagi, R., Harhalakis, G., & Proth, J. M. (1990). Multiple routeings and capacity considerations in group technology applications. International Journal of Production Research, 28(12), 1243–1257.

    Google Scholar 

  • Nair, G. J. (1999). Accord: A bicriterion algorithm for cell formation using ordinal and ratio level data. International Journal of Production Research, 37(3), 539–556.

    Google Scholar 

  • Onwubalu, G. C. (1999). Design of parts for cellular manufacturing using neural network-based approach. Journal of Intelligent Manufacturing, 10, 251–265.

    Google Scholar 

  • Onwubalu, G. C., & Mutingi, M. (2001). A genetic algorithm approach to cellular manufacturing systems. Computers and Industrial Engineering, 39, 125–44.

    Google Scholar 

  • Pa Rkin, R. E., & Li, M. L. (1997). The multi-dimensional aspects of a group technology algorithm. International Journal of Production Research, 35(8), 2345–2358.

    Google Scholar 

  • Papaionnaou, G., & Wilson, J. M. (2010). The evolution of cell formation problem methodologies based on recent studies (1997–2008): Review and directions for future research. European Journal of Operational Research, 206, 509–521.

    Google Scholar 

  • Sandbothe, R. A. (1998). Two observations on the grouping efficacy measure for goodness of block diagonal forms. International Journal of Production Research, 36(11), 3217–3222.

    Google Scholar 

  • Sarker, B. R., & Khan, M. (2001). A comparison of existing grouping eciency measures and a new weighted grouping eciency measure. IIE Transactions, 33, 11–27.

    Google Scholar 

  • Seifoddini, H. (1989). Single linkage versus average linkage clustering in machine cells formation applications. Computers and Industrial Engineering, 16(3), 419–426.

    Google Scholar 

  • Seifoddini, H., & Djassemi, M. (1991). The production data based similarity coefficient versus Jaccard’s similarity coefficient. Computers Industrial Engineering, 21, 263–266.

    Google Scholar 

  • Seifoddini, H., & Djassemi, M. (1996). The threshold value of a quality index for formation of cellular manufacturing systems. International Journal of Production Research, 34(12), 3401–3416.

    Google Scholar 

  • Seifoddini, H., & Wolfe, P. M. (1986). Application of the similarity coefficient method in group technology. IIE Transactions, 18(3), 266–270.

    Google Scholar 

  • Shargal, M., Shekhar, S., & Irani, S. A. (1995). Evaluation of search algorithms and clustering efficiency measures for machine-part matrix clustering. IIE Transactions, 27(1), 43–59.

    Google Scholar 

  • Srinivasan, G. (1994). A clustering algorithm for machine cell formation in group technology using minimum spanning trees. International Journal of Production Research, 32(9), 2149–2158.

    Google Scholar 

  • Srinivasan, G., Narendran, T., & Mahadevan, B. (1990). An assignment model for the part-families problem in group technology. International Journal of Production Research, 28(1), 145–152.

    Google Scholar 

  • Stanfel, L. (1985). Machine clustering for economic production. Engineering Costs and Production Economics, 9, 73–78.

    Google Scholar 

  • Talbi, E. (2009). Metaheuristics: From design to implementation (p. 267). New Jersey: Wiley.

    Google Scholar 

  • Tunnukij, T., & Hicks, C. (2009). An enhanced grouping genetic algorithm for solving the cell formation problem. International Journal of Production Research, 47(7), 1989–2007.

    Google Scholar 

  • Ulutas, B., & Sarac, T. (2009). A clonal selection algorithm for cell formation problem with alternative routings. In \(4^{{\rm th}}\)international conference of group technology/cellular manufacturing 2009 (GT/CM 2009), 16–18 February 2009 (pp. 10–14). Japan: Kitakyishu.

  • Ulutas, B. (2015). Assessing the number of cells for a cell formation problem. IFAC Proceedings Volumes, 48(3), 1122–1127.

    Google Scholar 

  • Ulutas, H. B., & Islier, A. A. (2007). A parameter setting for clonal selection algorithm in facility layout problems. In O. Gervasi & M. Gavrilova (Eds.), LNCS Springer (pp. 886–899). Berlin: Springer. 4705/2007.

    Google Scholar 

  • Ulutas, H. B., & Islier, A. A. (2009). A clonal selection algorithm for dynamic facility layout problems. Journal of Manufacturing Systems, 28(4), 123–131.

    Google Scholar 

  • Ulutas, B., & Islier, A. A. (2009). The performance of clonal selection algorithm for cell formation problem compared to other nature based methods, 4th International Conference of Group Technology/Cellular Manufacturing 2009 (GT/CM 2009), 16–18 February 2009 (pp. 15–22). Japan: Kitakyishu.

    Google Scholar 

  • Ulutas, B. H., & Kulturel-Konak, S. (2011). A review of clonal selection algorithm and its applications. Artificial Intelligence Review, 36(2), 117–138.

    Google Scholar 

  • Ulutas, H. B., & Kulturel-Konak, S. (2012). An artificial immune system based algorithm to solve unequal area facility layout problem. Expert Systems with Applications, 39(5), 5384–5395.

    Google Scholar 

  • Ulutas, H. B., & Kulturel-Konak, S. (2013). Assessing hypermutation operators of clonal selection algorithm for the unequal area facility layout problem. Engineering Optimization, 45(3), 375–395.

    Google Scholar 

  • Viswanathan, S. (1996). A new approach for solving the P-median problem in group technology. International Journal of Production Research, 34(10), 2691–2700.

    Google Scholar 

  • Waghodekar, P. H., & Sahu, S. (1984). Machine-component cell formation in group technology, MACE. International Journal of Production Research, 22, 937–948.

    Google Scholar 

  • Wemmerlov, U., & Hyer, N. (1989). Cellular manufacturing in the US industry: a survey of users. International Journal of Production Research, 27(9), 1511–1530.

    Google Scholar 

  • Won, Y., & Kim, S. (1997). Multiple criteria clustering algorithm for solving the group technology problem with multiple process routings. Computers and Industrial Engineering, 32(1), 207–220.

    Google Scholar 

  • Xiangyong, L., Baki, M. F., & Aneja, Y. P. (2010). An ant colony optimization metaheuristic for machine-part cell formation problem. Computers and Operations Research, 37, 2071–2081.

    Google Scholar 

  • Yang, M. S., & Yang, J. H. (2008). Machine-part cell formation in group technology using a modified ART1 method. European Journal of Operations Research, 188(1), 140–152.

    Google Scholar 

  • Yasuda, K., Hu, L., & Yin, Y. (2005). A grouping genetic algorithm for the multi-objective cell formation problem. International Journal of Production Research, 43(4), 829–853.

    Google Scholar 

  • Zolfaghari, S., & Liang, M. (1997). An objective-guided ortho-synapse Hopfield network approach to machine grouping problems. International Journal of Production Research, 35(10), 2773–2792.

    Google Scholar 

  • Zolfaghari, S., & Liang, M. (2002). Comparative study of simulated annealing, genetic algorithms and tabu search for binary and comprehensive machine-grouping problems. International Journal of Production Research, 40, 2141–2158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna H. Ulutas.

Appendices

Appendix I: grouping for data set A

figure b
figure c

Appendix II: grouping for data set B

figure d
figure e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulutas, B.H. An immune system based algorithm for cell formation problem. J Intell Manuf 30, 2835–2852 (2019). https://doi.org/10.1007/s10845-018-1407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1407-x

Keywords

Navigation