Skip to main content
Log in

An analytical model taking feed rate effect into consideration for scallop height calculation in milling with torus-end cutter

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Feed rate effect on scallop height in complex surface milling by torus-end mill is rarely studied. In a previous paper, an analytical predictive model of scallop height based on transverse step over distance has been established. However, this model doesn’t take feed rate effect into consideration. In the present work an analytical expression of scallop height, including feed rate effect, is detailed in order to quantify feed rate effect and thus to estimate more precisely the surface quality. Then, an experimental validation is conducted, comparing the presented model predictions with experimental results. Actually, the share of the scallop height due to feed effect is highly dependent on the machining configuration. However, most of time, the feed effect on total scallop height values is far from being negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Actually the final value of the scallop height is directly provided by the analysis software of the measurement device that compute an average value along the whole measured profile.

References

  • Bedi, D. S., Ismail, F., Mahjoob, M. J., & Chen, Y. (1997). Toroidal versus ball nose and flat bottom end mills. The International Journal of Advanced Manufacturing Technology, 13(5), 326–332. doi:10.1007/BF01178252.

    Article  Google Scholar 

  • Can, A., & Ünüvar, A. (2010). A novel iso-scallop tool-path generation for efficient five-axis machining of free-form surfaces. The International Journal of Advanced Manufacturing Technology, 51(9–12), 1083–1098. doi:10.1007/s00170-010-2698-z.

    Article  Google Scholar 

  • Cheţan, P., Boloş, V., Pozdîrcă, A., & Peterlicean, A. (2014). Influence of radial finishing trajectories to the roughness obtained by milling of spherical surfaces. Procedia Technology, 12, 420–426. doi:10.1016/j.protcy.2013.12.508.

    Article  Google Scholar 

  • Cheţn, P., Boloş, V., & Pozdîrcă, A. (2014). Influence of plane-parallel finishing trajectories to the roughness obtained by milling of spherical surfaces. Procedia Technology, 12, 411–419. doi:10.1016/j.protcy.2013.12.507.

    Article  Google Scholar 

  • Chen, Z. C., & Song, D. (2006). A practical approach to generating accurate iso-cusped tool paths for three-axis CNC milling of sculptured surface parts. Journal of Manufacturing Processes, 8(1), 29–38. doi:10.1016/S1526-6125(06)70099-8.

    Article  Google Scholar 

  • Cho, H., Jun, Y., & Yang, M. (1993). 5-axis CNC milling for effective machining of sculptured surfaces. International Journal of Production Research, 31(11), 2559–2573.

    Article  Google Scholar 

  • Denkena, B., de Leon, L., Turger, A., & Behrens, L. (2010). Prediction of contact conditions and theoretical roughness in manufacturing of complex implants by toric grinding tools. International Journal of Machine Tools and Manufacture, 50(7), 630–636. doi:10.1016/j.ijmachtools.2010.03.008.

    Article  Google Scholar 

  • Denkena, B., Köhler, J., & van der Meer, M. (2013). A roughness model for the machining of biomedical ceramics by toric grinding pins. CIRP Journal of Manufacturing Science and Technology, 6(1), 22–33. doi:10.1016/j.cirpj.2012.07.002.

    Article  Google Scholar 

  • Djebali, S., Segonds, S., Redonnet, J. M., & Rubio, W. (2015). Using the global optimisation methods to minimise the machining path length of the free-form surfaces in three-axis milling. International Journal of Production Research, 53(17), 5296–5309.

    Article  Google Scholar 

  • Du, J., Xg, Y., & Xt, T. (2012). The avoidance of cutter gouging in five-axis machining with a fillet-end milling cutter. The International Journal of Advanced Manufacturing Technology, 62(1–4), 89–97.

    Article  Google Scholar 

  • Duan, X., Peng, F., Yan, R., Zhu, Z., & Li, B. (2015). Experimental study of the effect of tool orientation on cutter deflection in five-axis filleted end dry milling of ultrahigh-strength steel. The International Journal of Advanced Manufacturing Technology, 81(1–4), 653–666.

    Article  Google Scholar 

  • He, Y., & Chen, Z. T. (2016). Achieving quasi constant machining strip width in five-axis frontal grinding with toroidal tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(3), 587–592.

    Article  Google Scholar 

  • Kim, B., & Chu, C. (1994). Effect of cutter mark on surface roughness and scallop height in sculptured surface machining. Computer-Aided Design, 26(3), 179–188.

    Article  Google Scholar 

  • Kim, B. H., & Chu, C. N. (1999). Texture prediction of milled surfaces using texture superposition method. Computer-Aided Design, 31(8), 485–494. doi:10.1016/S0010-4485(99)00045-7.

    Article  Google Scholar 

  • Lasemi, A., Xue, D., & Gu, P. (2010). Recent development in CNC machining of freeform surfaces: A state-of-the-art review. Computer-Aided Design, 42(7), 641–654. doi:10.1016/j.cad.2010.04.002.

    Article  Google Scholar 

  • Lee, Y. S. (1998). Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining. Computer-Aided Design, 30(7), 559–570. doi:10.1016/S0010-4485(98)00822-7.

    Article  Google Scholar 

  • Lin, R. S., & Koren, Y. (1996). Efficient tool-path planning for machining free-form surfaces. Journal of Engineering for Industry, 118(1), 20–28. doi:10.1115/1.2803642.

    Article  Google Scholar 

  • Perles, A., Djebali, S., Lemouzy, S., Segonds, S., Redonnet, J. M., & Rubio, W. (2015). Milling plan optimization with an emergent problemsolving approach. Computers & Industrial Engineering, 87, 506–517. doi:10.1016/j.cie.2015.05.025.

    Article  Google Scholar 

  • Pi, J., Red, E., & Jensen, G. (1998). Grind-free tool path generation for five-axis surface machining. Computer Integrated Manufacturing Systems, 11(4), 337–350. doi:10.1016/S0951-5240(98)00033-0.

    Article  Google Scholar 

  • Redonnet, J. M., Rubio, W., Monies, F., & Dessein, G. (2000). Optimising tool positioning for end-mill machining of free-form surfaces on 5-axis machines for both semi-finishing and finishing. The International Journal of Advanced Manufacturing Technology, 16(6), 383–391.

  • Redonnet, J. M., Djebali, S., Segonds, S., Senatore, J., & Rubio, W. (2013). Study of the effective cutter radius for end milling of free-form surfaces using a torus milling cutter. Computer-Aided Design, 45(6), 951–962. doi:10.1016/j.cad.2013.03.002.

    Article  Google Scholar 

  • Redonnet, J. M., Gamboa Vázquez, A., Traslosheros Michel, A., & Segonds, S. (2016). Optimisation of free-form surface machining using parallel planes strategy and torus milling cutter. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (in press)

  • Senatore, J., Segonds, S., Rubio, W., & Dessein, G. (2012). Correlation between machining direction, cutter geometry and step-over distance in 3-axis milling: Application to milling by zones. Computer-Aided Design, 44(12), 1151–1160. doi:10.1016/j.cad.2012.06.008.

    Article  Google Scholar 

  • Suresh, K., & Yang, D. C. H. (1994). Constant scallop-height machining of free-form surfaces. Journal of Engineering for Industry, 116(2), 253–259. doi:10.1115/1.2901938.

    Article  Google Scholar 

  • Tai, C. C., & Fuh, K. H. (1994). A predictive force model in ball-end milling including eccentricity effects. International Journal of Machine Tools and Manufacture, 34(7), 959–979. doi:10.1016/0890-6955(94)90028-0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Segonds.

Appendix: Scallop height approximation

Appendix: Scallop height approximation

Considering \(\varrho \) the curvature of the surface locally constant, the scallop height calculation is based on the equation:

$$\begin{aligned} R_{eff}^2=(\varrho +h_1)^2+(\varrho +R_{eff})^2-2\,\cos (\beta )(\varrho +R_{eff})(\varrho +h_1) \end{aligned}$$

From this equation the following can be calculated:

$$\begin{aligned} \cos (\beta ) = \frac{2\,\varrho ^2 + 2\,\varrho \,R_{eff} + 2\,\varrho \,h_1 + h_1^2}{2(\varrho +R_{eff})(\varrho +h_1)} \end{aligned}$$

\(h_1^2\) may be considered negligible in comparison with other quantities. Thus:

$$\begin{aligned} \cos (\beta ) = \frac{2\,\varrho ^2 + 2\,\varrho \,R_{eff} + 2\,\varrho \,h_1}{2(\varrho +R_{eff})(\varrho +h_1)} \end{aligned}$$

Considering \(s_{od}\) the distance between the two contact points (see Figs. 45), the following can be stated:

$$\begin{aligned} \sin (\beta ) = \frac{s_{od}}{2\,\varrho } \end{aligned}$$

Using the fact that \(\sin ^2(\beta ) = 1-\cos ^2(\beta )\) it can be deduced that:

$$\begin{aligned} \left( \frac{s_{od}}{2\,\varrho }\right) ^2 = 1-\left( \frac{2\,\varrho ^2 + 2\,\varrho \,R_{eff} + 2\,\varrho \,h_1}{2(\varrho +R_{eff})(\varrho +h_1)}\right) ^2 \end{aligned}$$

whence

$$\begin{aligned} \frac{s_{od}^2}{4\,\varrho ^2}&= 1-\frac{(\varrho ^2 + \varrho \,R_{eff} + \varrho \,h_1)^2}{\left( (\varrho +R_{eff})(\varrho +h_1)\right) ^2} \\&= \frac{\left( (\varrho +R_{eff})(\varrho +h_1)\right) ^2 - (\varrho ^2 + \varrho \,R_{eff} + \varrho \,h_1)^2}{\left( (\varrho +R_{eff})(\varrho +h_1)\right) ^2} \\&= \frac{R_{eff}\,h_1(2\,\varrho ^2 + 2\,\varrho \,R_{eff} + 2\,\varrho \,h_1+R_{eff}\,h_1)}{(\varrho +R_{eff})^2(\varrho +h_1)^2} \\&= \frac{R_{eff}\,h_1(2\,\varrho (\varrho + R_{eff} + h_1)+R_{eff}\,h_1)}{(\varrho +R_{eff})^2(\varrho +h_1)^2} \end{aligned}$$

\(h_1\) may be considered negligible when added with \(\varrho \). Thus:

$$\begin{aligned} \frac{s_{od}^2}{4\,\varrho ^2}&= \frac{R_{eff}\,h_1(2\,\varrho ^2 + 2\,\varrho \,R_{eff}+R_{eff}\,h_1)}{\varrho ^2\,(\varrho +R_{eff})^2}\\&= \frac{R_{eff}\,h_1(2\,\varrho ^2 + R_{eff}(2\,\varrho +h_1))}{\varrho ^2\,(\varrho +R_{eff})^2}\\ \end{aligned}$$

again \(h_1\) may be considered negligible when added with \(\varrho \). Thus:

$$\begin{aligned} \frac{s_{od}^2}{4\,\varrho ^2}&= \frac{R_{eff}\,h_1(2\,\varrho ^2 + 2\,\varrho \,R_{eff})}{\varrho ^2\,(\varrho +R_{eff})^2} \\&= \frac{2\,\varrho \,R_{eff}\,h_1(\varrho + R_{eff})}{\varrho ^2\,(\varrho +R_{eff})^2} \\&= \frac{2\,R_{eff}\,h_1}{\varrho \,(\varrho +R_{eff})} \end{aligned}$$

Finally the expression of \(h_1\) is:

$$\begin{aligned} h_1 = \frac{s_{od}^2(\varrho +R_{eff})}{8\,\varrho \,R_{eff}} \end{aligned}$$

Calculation of the scallop height \(h_{1p}\) for a plane surface is directly derived of the equation:

$$\begin{aligned} R_{eff}^2 = \left( \frac{s_{od}}{2}\right) ^2 + (R_{eff}-h_{1p})^2 \end{aligned}$$

which, considering \(h_{1p}^2\) negligible in comparison with other quantities, leads to:

$$\begin{aligned} h_{1p} = \frac{s_{od}^2}{8\,R_{eff}} \end{aligned}$$

Thus, considering that

$$\begin{aligned} \lim _{\varrho \rightarrow \infty } \frac{s_{od}^2(\varrho +R_{eff})}{8\,\varrho \,R_{eff}} = \frac{s_{od}^2}{8\,R_{eff}} \end{aligned}$$

the following can be stated:

$$\begin{aligned} \lim _{\varrho \rightarrow \infty } h_1 = h_{1p} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segonds, S., Seitier, P., Bordreuil, C. et al. An analytical model taking feed rate effect into consideration for scallop height calculation in milling with torus-end cutter. J Intell Manuf 30, 1881–1893 (2019). https://doi.org/10.1007/s10845-017-1360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-017-1360-0

Keywords

Navigation