Skip to main content
Log in

Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Managing tool-wear is an important issue associated with all material removal processes. This paper deals with the application of two nature-inspired computing techniques, namely, artificial neural network (ANN) and (in silico) DNA-based computing (DBC) for managing the tool-wear. Experimental data (images of worn-zone of cutting tool) has been used to train the ANN and, then, to perform the DBC. It is demonstrated that the ANN can predict the degree of tool-wear from a set of tool-wear images processed under a given procedure whereas the DBC can identify the degree of similarity/dissimilar among the processed images. Further study can be carried out while solving other complex problems integrating ANN and DBC where both prediction and pattern-recognition are two important computational problems that need to be solved simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Azmi, A. I. (2015). Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites. Advances in Engineering Software, 82, 53–64.

    Article  Google Scholar 

  • D’Addona, D. M., & Teti, R. (2013). Image data processing via neural networks for tool wear prediction. Procedia CIRP, 12, 252–257.

    Article  Google Scholar 

  • D’Addona, D., Segreto, T., Simeone, A., & Teti, R. (2011). ANN tool-wear modelling in the machining of nickel superalloy industrial products. CIRP Journal of Manufacturing Science and Technology, 4, 33–37.

    Article  Google Scholar 

  • D’Addona, D. M., Matarazzo, D., Di Foggia, M., Caramiello, C., & Iannuzzi, S. (2015a). Inclusion scraps control in aerospace blades production through cognitive paradigms. Procedia CIRP, 33, 322–327.

    Google Scholar 

  • D’Addona, D. M., Matarazzo, D., Ullah, A. M. M. S., & Teti, R. (2015b). Tool wear control through cognitive paradigms. Procedia CIRP, 33, 221–226.

    Article  Google Scholar 

  • ISO/IEC. (1996). Information technology-vocabulary-part 16: Information theory. International Standard, ISO/IEC 2382/16:1996(E/F).

  • Jemielniak, K., Urbański, T., Kossakowska, J., & Bombiński, S. (2012). Tool condition monitoring based on numerous signal features. The International Journal of Advanced Manufacturing Technology, 59, 73–81.

    Article  Google Scholar 

  • Kassim, A. A., Mannan, M. A., & Jing, M. (2000). Machine tool condition monitoring using workpiece surface texture analysis. Machine Vision and Applications, 11, 257–263.

    Article  Google Scholar 

  • Kilundu, B., Dehombreux, P., & Chiementin, X. (2011). Tool wear monitoring by machine learning techniques and singular spectrum analysis. Mechanical Systems and Signal Processing, 25, 400–415.

    Article  Google Scholar 

  • Lanzetta, M. (2001). A new flexible high-resolution vision sensor for tool condition monitoring. Journal of Materials Processing Technology, 119, 73–82.

    Article  Google Scholar 

  • Li, X., Djordjevich, A., & Venuvinod, P. K. (2000). Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring. IEEE Transactions on Industrial Electronics, 47, 697–702.

    Article  Google Scholar 

  • Li, X., & Zhejun, Y. (1998). Tool wear monitoring with wavelet packet transform fuzzy clustering method. Wear, 219, 145–154.

    Article  Google Scholar 

  • Lou, C. W., & Dong, M. C. (2015). A novel random fuzzy neural networks for tackling uncertainties of electric load forecasting. International Journal of Electrical Power and Energy Systems, 73, 34–44.

    Article  Google Scholar 

  • Masters, T. (1993). Practical neural network recipes in C++. San Diego: Academic Press.

    Google Scholar 

  • Murata, M., Kurokawa, S., Ohnishi, O., Uneda, M., & Doi, T. (2012). Real-time evaluation of tool flank wear by in-process contact resistance measurement in face milling. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6, 958–970.

    Article  Google Scholar 

  • Nouri, M., Fussell, B. K., Ziniti, B. L., & Linder, E. (2015). Real-time tool wear monitoring in milling using a cutting condition independent method. International Journal of Machine Tools and Manufacture, 89, 1–13.

    Article  Google Scholar 

  • Pal, S., Heyns, P. S., Freyer, B. H., Theron, N. J., & Pal, S. K. (2011). Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. Journal of Intelligent Manufacturing, 22, 491–504.

    Article  Google Scholar 

  • Patra, K., Pal, S. K., & Bhattacharyya, K. (2010). Fuzzy radial basis function (FRBF) network based tool condition monitoring system using vibration signals. Machining Science and Technology, 14, 280–300.

    Article  Google Scholar 

  • Penedo, F., Haber, R. E., Gajate, A., & del Toro, R. M. (2012). Hybrid incremental modeling based on least squares and fuzzy K-NN for monitoring tool wear in turning processes. IEEE Transactions on Industrial Informatics, 8, 811–818.

    Article  Google Scholar 

  • Prakash, M., & Kanthababu, M. (2013). In-process tool condition monitoring using acoustic emission sensor in microendmilling. Machining Science and Technology, 17, 209–227.

    Article  Google Scholar 

  • Ren, Q., Balazinski, M., Baron, L., Jemielniak, K., Botez, R., & Achiche, S. (2014). Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Information Sciences, 255, 121–134.

    Article  Google Scholar 

  • Segreto, T., Simeone, A., & Teti, R. (2014). Principal component analysis for feature extraction and NN pattern recognition in sensor monitoring of chip form during turning. CIRP Journal of Manufacturing Science and Technology, 7, 202–209.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423 and 623-656.

  • Takuma, M., Shibasaka, T., Yamamoto, A., & Teshima, T. (1994). A study on tool management system in turning (1st report): Estimation of cutting tool life by processing image data with neural network. Journal of the Japan Society for Precision Engineering, 60, 723–727.

    Article  Google Scholar 

  • Tengeleng, S., & Armand, N. (2014). Performance of using cascade forward back propagation neural networks for estimating rain parameters with rain drop size distribution. Atmosphere, 5, 454.

    Article  Google Scholar 

  • Teshima, T., Shibasaka, T., Takuma, M., Yamamoto, A., & Iwata, K. (1993). Estimation of cutting tool life by processing tool image data with neural network. CIRP Annals Manufacturing Technology, 42, 59–62.

    Article  Google Scholar 

  • Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals Manufacturing Technology, 59, 717–739.

    Article  Google Scholar 

  • Ullah, A. M. M. S., Arai, N., & Watanabe, M. (2013). Concept map and internet-aided manufacturing. Procedia CIRP, 12, 378–383.

    Article  Google Scholar 

  • Ullah, A. M. M. S., D’Addona, D., & Arai, N. (2014). DNA based computing for understanding complex shapes. Biosystems, 117, 40–53.

    Article  Google Scholar 

  • Ullah, A. M. M. S. (2010). A DNA-based computing method for solving control chart pattern recognition problems. CIRP Journal of Manufacturing Science and Technology, 3, 293–303.

    Article  Google Scholar 

  • Wang, W. H., Hong, G. S., Wong, Y. S., & Zhu, K. P. (2007). Sensor fusion for online tool condition monitoring in milling. International Journal of Production Research, 45, 5095–5116.

    Article  Google Scholar 

  • Wang, G., Qian, L., & Guo, Z. (2013a). Continuous tool wear prediction based on Gaussian mixture regression model. The International Journal of Advanced Manufacturing Technology, 66, 1921–1929.

    Article  Google Scholar 

  • Wang, G., & Cui, Y. (2013b). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24, 1085–1094.

    Article  Google Scholar 

  • Wang, G., & Feng, X. (2013). Tool wear state recognition based on linear chain conditional random field model. Engineering Applications of Artificial Intelligence, 26, 1421–1427.

    Article  Google Scholar 

  • Wang, W. H., Wong, Y. S., & Hong, G. S. (2006a). 3D measurement of crater wear by phase shifting method. Wear, 261, 164–171.

    Article  Google Scholar 

  • Wang, W. H., Hong, G. S., & Wong, Y. S. (2006b). Flank wear measurement by a threshold independent method with sub-pixel accuracy. International Journal of Machine Tools and Manufacture, 46, 199–207.

    Article  Google Scholar 

  • Xu, J., Yamada, K., Seikiya, K., Tanaka, R., & Yamane, Y. (2014). Comparison of applying static and dynamic features for drill wear prediction. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 8, JAMDSM0056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doriana M. D’Addona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Addona, D.M., Ullah, A.M.M.S. & Matarazzo, D. Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. J Intell Manuf 28, 1285–1301 (2017). https://doi.org/10.1007/s10845-015-1155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1155-0

Keywords

Navigation