Skip to main content
Log in

Fuzzy holons for intelligent multi-scale design in cloud-based design for configurations

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Cloud-based design for configurations can be referred to as a service-oriented networked design for configurations model. However, cloud-based models also pose challenges such as reliability, availability, capability, ability, adaptability of resources, and services across spatial boundaries. Multi-scale design can presumably stimulate greater intelligence in cloud-based models. Using the concepts of the fuzzy holon and the fuzzy attractor, this paper proposes the fuzzy holonic approach to address multi-scale design for configurations. A fuzzy design holon is defined through two basic holons: fuzzy function holon and fuzzy solution holon. A fuzzy attractor is defined as a fuzzy function holon or fuzzy function solution toward which a design tends to evolve. The proposed fuzzy holon model is driven by two conflicting drives: (a) completeness of fuzzy function holons and fuzzy solution holons, and (b) discrimination of fuzzy function holons and fuzzy solution holons. Through simulations, four possible states of behavior of fuzzy holon design are found: (a) the impossibility state characterized by the impossibility of fuzzy holon creation; (b) the creation and destruction state sometimes characterized by the creation of fuzzy holons and sometimes the destruction of fuzzy holons, (c) the development state characterized by a natural creation and development of fuzzy holons and (d) the failure state characterized by the interruption of the development of the fuzzy design holon and the destruction of already created fuzzy design holon. The model explains that design is not an orderly and well behaved phenomenon. It shows that fuzzy holon design is a discontinuous phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abdoos, M., Mozayani, N., & Bazzan, A. L. C. (2013). Holonic multi-agent system for traffic signals control. Engineering Applications of Artificial Intelligence, 26, 1575–1587.

    Article  Google Scholar 

  • Adali, M. R., Taskin, M. F., & Taskin, H. (2009). Selecting the optimal shift numbers using fuzzy control model: A paint factory’s facility application. Journal of Intelligent Manufacturing, 2, 267–272.

    Article  Google Scholar 

  • Andreadis, G., Fourtounis, G., & Bouzakis, K. D. (2015). Collaborative design in the era of cloud computing. Advances in Engineering Software, 8, 66–72.

    Article  Google Scholar 

  • Antonsson, E. K., & Otto, K. N. (1995). Imprecision in engineering design. ASME Journal of Mechanical Design, 117B, 25–32.

    Article  Google Scholar 

  • Arai, T., Aiyama, Y., Sugi, M., & Ota, J. (2001). Holonic assembly system with plug and produce. Computers in Industry, 46, 289–299.

    Article  Google Scholar 

  • Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets Systems, 20, 87–96.

    Article  Google Scholar 

  • Atanassov, K. (1994). Operators over interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst, 64, 159–174.

    Article  Google Scholar 

  • Babiceanu, R. F., & Chen, F. F. (2006). Development and applications of holonic manufacturing systems: A survey. Journal of Intelligent Manufacturing, 17(1), 111–131.

    Article  Google Scholar 

  • Balasubramanian, S., Brennan, R. W., & Norrie, D. H. (2001). An architecture for metamorphic control of holonic manufacturing systems. Computer in Industry, 46, 13–31.

    Article  Google Scholar 

  • Bandemer, H., & Gottwald, S. (1995). Fuzzy sets, fuzzy logic, fuzzy methods. Chichester: Wiley.

    Google Scholar 

  • Baoding, L. (2007). Uncertainty theory. Berlin: Springer.

    Google Scholar 

  • Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17B, 141–164.

    Article  Google Scholar 

  • Blanc, P., Demongodin, I., & Castagna, P. (2008). A holonic approach for manufacturing execution system design: An industrial application. Engineering Applications of Artificial Intelligence, 21, 315–330.

    Article  Google Scholar 

  • Chen, T., & Lin, C. W. (2015). Estimating the simulation workload for factory simulation as a cloud service. Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1068-y.

  • Chen, T. (2013). An effective fuzzy collaborative forecasting approach for predicting the job cycle time in wafer fabrication. Computers & Industrial Engineering, 66, 834–848.

    Article  Google Scholar 

  • Chen, T. (2012). A collaborative fuzzy-neural approach for long-term load forecasting in Taiwan. Computers & Industrial Engineering, 63, 663–670.

    Article  Google Scholar 

  • Chen, T., & Wang, Y. C. (2009). A fuzzy set approach for evaluating and enhancing the mid-term competitiveness of a semiconductor factory. Fuzzy Sets and Systems, 160, 569–585.

    Article  Google Scholar 

  • Choulier, D., Fougères, A. J., & Ostrosi, E. (2015). Developing multiagent systems for design activity analysis. Computer-Aided Design, 59, 201–213.

    Article  Google Scholar 

  • Deciu, E. R., Ostrosi, E., & Ferney, M. (2005). Configurable product design using multiple fuzzy models. Journal of Engineering Design, 16(2), 209–235.

    Article  Google Scholar 

  • Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Longman: Addison Wesley.

    Google Scholar 

  • Fletcher, M., Brennan, R. W., & Norrie, D. H. (2003). Modeling and reconfiguring intelligent holonic manufacturing systems with Internet-based mobile agents. Journal of Intelligent Manufacturing, 14(1), 7–23.

    Article  Google Scholar 

  • Fougères, A. J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20, 259–274.

    Google Scholar 

  • Gau, W. L., & Buehrer, D. J. (1993). Vague sets. IEEE Transactions on Systems, Man, and Cybernetics, 23, 610–614.

    Article  Google Scholar 

  • Giret, A., & Botti, V. (2009). Engineering holonic manufacturing systems. Computers in Industry, 60(6), 428–440.

    Article  Google Scholar 

  • Giret, A., & Botti, V. (2004). Holons and agents. Journal of Intelligent Manufacturing, 15(5), 645–659.

    Article  Google Scholar 

  • Hashemian, M. (2005). Design for adaptability. PhD thesis. University of Saskatchewan, Saskatoon, Sas-katchewan. Canada.

  • Honma, N., Abe, K., Sato, M., & Takeda, H. (1998). Adaptive evolution of holon networks by an autonomous decentralized method. Applied Mathematics and Computation, 91, 43–61.

    Article  Google Scholar 

  • Hsieh, F. S. (2008). Robustness analysis of holonic assembly/disassembly processes with Petri nets. Automatica, 44, 2538–2548.

    Article  Google Scholar 

  • Jackson, M. C., & Keys, P. (1984). Towards a system of system methodologies. Journal of Operations Research, 35, 473–486.

    Article  Google Scholar 

  • Jeguirim, S. E. G., Dhouib, A. B., Sahnoun, M., Cheikhrouhou, M., Schacher, L., & Adolphe, D. (2011). The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics. Journal of Intelligent Manufacturing, 6, 873–884.

    Article  Google Scholar 

  • Jin, H., Yao, X., & Chen, Y. (2015). Correlation-aware QoS modeling and manufacturing cloud service composition. Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1080-2.

  • Jing, X., Luo, X., & Zhang, Y. (2014). A fuzzy dynamic belief logic system. International Journal of Intelligent Systems, 29, 687–711.

    Article  Google Scholar 

  • Khalfallah, M., Figay, N., Ferreira Da Silva, C., & Ghodous, P. (2014). A cloud-based platform to ensure interoperability in aerospace industry. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0897-4.

  • Koestler, A. (1967). The ghost in the machine. London: Arkana Books.

    Google Scholar 

  • Leitao, P., Boissier, R., Casais, F., & Restivo, F. (2003). Integration of automation resources in holonic manufacturing applications: holonic and multi-agent systems for manufacturing. In Lecture notes in computer science, vol. 2744, pp. 1085–1086.

  • Leitao, P., & Restivo, F. (2008). A holonic approach to dynamic manufacturing scheduling. Robotics and Computer-Integrated Manufacturing, 24, 625–634.

    Article  Google Scholar 

  • Leitao, P., & Restivo, F. (2006). ADACOR: A holonic architecture for agile and adaptive manufacturing control. Computers in Industry, 57, 121–130.

    Article  Google Scholar 

  • Li, B. H., Zhang, L., Wang, S. L., Tao, F., Cao, J. W., Jiang, X. D., et al. (2010). Cloud manufacturing: A new service-oriented networked manufacturing model. Computer Integrated Manufacturing Systems, 16(1), 1–16.

    Google Scholar 

  • Li, C., Wang, S., Kang, L., Guo, L., & Cao, Y. (2014). Trust evaluation model of cloud manufacturing service platform. International Journal of Manufacturing Technology, 75, 489–501.

    Article  Google Scholar 

  • Liao, T. W. (2001). Classification and coding approaches to part family formation under a fuzzy environment. Fuzzy Sets and Systems, 122, 425–441.

    Article  Google Scholar 

  • Lin, Y. K., & Chong, C. S. (2015). Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system. The Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1074-0.

  • Luo, Y., Zhang, L., Tao, F., Ren, L., Liu, Y., & Zhang, Z. (2013). A modeling and description method of multidimensional information for manufacturing capability in cloud manufacturing system. The International Journal of Advanced Manufacturing Technology, 69, 961–975.

    Article  Google Scholar 

  • Marcotorchino, F. (1987). An unified approach of the block-seriation problems. Journal of Applied Stochastic Models and Data Analysis, 3(2), 1–13.

    Google Scholar 

  • Mella, P. (2009). The Holonic revolution: holons, holarchies and holonic networks: The ghost in the production machine. Pavia, Italy: Pavia University Press.

  • Meng, F., & Tang, J. (2013). Interval-valued intuitionistic fuzzy multiattribute group decision making based on cross entropy measure and choquet integral. International Journal of Intelligent Systems, 28, 1172–1195.

    Article  Google Scholar 

  • Mohammad, A. F., Dargham, J., Mcheick, H., & Noor, A. T. (2013). Software evolution as SaaS: Evolution of intelligent design in cloud. Procedia Computer Science, 19, 486–493.

    Article  Google Scholar 

  • Ostrosi, E., Ferney, M., & Garro, O. (2003). A fractal approach for concurrent engineering. International Journal of Concurrent Engineering: Research and Application, 11(4), 249–265.

    Article  Google Scholar 

  • Ostrosi, E., Fougères, A. J., Ferney, M., & Klein, D. (2012a). A fuzzy configuration multi-agent approach for product family modelling in conceptual design. Journal of Intelligent Manufacturing, 23(6), 2565–2586.

    Article  Google Scholar 

  • Ostrosi, E., Haxhiaj, L., & Fukuda, S. (2012b). Fuzzy modelling of consensus during design conflict resolution. Research in Engineering Design, 23(1), 53–70.

    Article  Google Scholar 

  • Ostrosi, E., & Tié Bi, S. (2010). Generalised design for optimal product configuration. The International Journal of Advanced Manufacturing Technology, 49(1–4), 13–25.

    Article  Google Scholar 

  • Ounnar, F., & Pujo, P. (2012). Pull control for job shop: Holonic manufacturing system approach using multicriteria decision-making. Journal of Intelligent Manufacturing, 23(1), 141–153.

    Article  Google Scholar 

  • Ounnar, F., Pujo, P., Mekaouche, L., & Giambiasi, N. (2009). Integration of a flat holonic form in an HLA environment. Journal of Intelligent Manufacturing, 20(1), 91–111.

    Article  Google Scholar 

  • Sallai, J., Varga, G., Toth, S., Iacovella, C., Klein, C., McCabe, C., et al. (2014). Web- and cloud-based software infrastructure for materials design. Procedia Computer Science, 29, 2034–2044.

    Article  Google Scholar 

  • Tan, C. Q., & Chen, X. H. (2011). Induced intuitionistic fuzzy Choquet integral operator for multi-attribute decision making. International Journal of Intelligent Systems, 26, 659–686.

    Article  Google Scholar 

  • Thom, R. (1989). Structural stability and morphogenesis: An outline of a general theory of models. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Valckenaers, P., & Van Brussel, H. (2005). Fundamental insights into holonic systems design. In Lecture notes in computer science, Vol 3593, pp. 11–22.

  • Valckenaers, P., Van Brussel, H., Wyns, J., Bongaerts, L., & Peeters, P. (1998). Designing holonic manufacturing systems. Robotics and Computer-Integrated Manufacturing, 14, 455–464.

  • Van Brussel, H., Bongaerts, L., Wyns, J., Valckenaers, P., & Ginderachter, T. V. (1999). A conceptual framework for holonic manufacturing: Identification of manufacturing holons. Journal of Manufacturing Systems, 18(1), 35–52.

  • Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., & Peeters, P. (1998). Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37, 255–274.

  • Wang, J., Zhang, L., Duan, L., & Gao, R. X. (2015). A new paradigm of cloud-based predictive maintenance for intelligent manufacturing. Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1066-0.

  • Wang, L. (2001). Integrated design-to-control approach for holonic manufacturing systems. Robotics and Computer Integrated Manufacturing, 17, 159–167.

    Article  Google Scholar 

  • Wang, S., Liu, Z., Sun, Q., Zou, H., & Yang, F. (2014). Towards an accurate evaluation of quality of cloud service in service-oriented cloud computing. Journal of Intelligent Manufacturing, 25, 283–293.

    Article  Google Scholar 

  • Ward, A. C., Liker, J. K., Sobek, D. K., & Cristiano, J. J. (1994). Set-based concurrent engineering and Toyota. In ASME Design Theory and Methodology—DTM’94 (Vol. DE6, pp. 79–90). New York: American Society for Mechanical Engineers.

  • Warnecke, H. J. (1993). The fractal company. Berlin: Springer.

    Book  Google Scholar 

  • Wu, D., Rosen, D. W., Wang, L., & Schaefer, D. (2015). Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 59, 1–14.

    Article  Google Scholar 

  • Xu, Z. (2005). An overview of methods for determining OWA weights. International Journal of Intelligent Systems, 20, 843–865.

    Article  Google Scholar 

  • Yager, R. R., & Kacprzyk, J. (1997). The ordered weighted averaging operators: Theory and applications. Norwell, MA: Kluwer.

    Book  Google Scholar 

  • Yang, Y. J., & Hinde, C. (2010). A new extension of fuzzy sets using rough sets: R-fuzzy sets. Information Sciences, 180, 354–365.

    Article  Google Scholar 

  • Zadeh, L. A. (1996). Fuzzy logic = computing with words. IEEE Trans Fuzzy Systems, 4(2), 103–111.

    Article  Google Scholar 

  • Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes interval- valued fuzzy sets. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 28–44.

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

  • Zhang, X., Balasubramanian, S., Brennan, R. W., & Norrie, D. H. (2000). Design and implementation of a real-time holonic control system for manufacturing. Information Sciences, 127, 23–44.

    Article  Google Scholar 

  • Zhang, Y., Zhang, G., Liu, Y., & Hu, D. (2015). Research on services encapsulation and virtualization access model of machine for cloud manufacturing. Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1064-2.

  • Zhou, W. (2014). An accurate method for determining hesitant fuzzy aggregation operator weights and its application to project investment. International Journal of Intelligent Systems, 29, 668–686.

    Article  Google Scholar 

  • Zimmermann, H. J. (1996). Fuzzy set theory and its applications (3rd ed.). Boston: Kluwer Academics Publishers.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homam Issa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa, H., Ostrosi, E., Lenczner, M. et al. Fuzzy holons for intelligent multi-scale design in cloud-based design for configurations. J Intell Manuf 28, 1219–1247 (2017). https://doi.org/10.1007/s10845-015-1119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1119-4

Keywords

Navigation