Skip to main content

Advertisement

Log in

Machine assisted manual torch operation: system design, response modeling, and speed control

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Skills possessed by human welders typically require a long time to develop. Especially, maintaining the torch to travel in desired speed is challenging. In this paper, a feedback control system is designed to assist the welder to adjust the torch movement for the desired speed in manual gas tungsten arc welding process. To this end, an innovative helmet based manual welding platform is proposed and developed. In this system, vibrators are installed on the helmet to generate vibration sounds to instruct the welder to speed or slow down the torch movement. The torch movement is monitored by a leap motion sensor. The torch speed is used as the feedback for the control algorithm to determine how to change the vibrations. To design the control algorithm, dynamic experiments are conducted to correlate the arm movement (torch speed) to the vibration control signal. Linear model is firstly identified using standard least squares method, and the model is analyzed. A nonlinear adaptive neuro-fuzzy inference system (ANFIS) model is then proposed to improve the model accuracy. The resultant nonlinear ANFIS model can estimate the welder’s response on the welding speed. Based on the response model, a PID control algorithm has been designed and implemented to control the welder arm movement for desired torch speed. Experiments verified the effectiveness of the system for the desired speed with acceptable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andersen, K., Cook, G. E., Barnett, R. J., et al. (1997). Synchronous weld pool oscillation for monitoring and control. IEEE Transactions on Industry Applications, 33(2), 464–471.

    Article  Google Scholar 

  • Astrom, K. J., & Wittenmark, B. (1995). Adaptive control. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Björck, Å. (1996). Numerical methods for least squares problems. Philadelphia, PA: SIAM.

    Book  Google Scholar 

  • Chandrasekhar, N., Vasudevan, M., Bhaduri, A. K., & Jayakumar, T. (2013). Intelligent modeling for estimating weld bead width and depth of penetration from infra-red thermal images of the weld pool. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0762-x.

  • Chen, S. J., Huang, N., Liu, Y. K., & Zhang Y. M. (2015). Machine assisted travel speed control in manual welding torch operation. International Journal of Advanced Manufacturing Technology, 76, 1371–1381. doi:10.1007/s00170-014-6310-9.

  • Chryssolouris, G., Lee, M., & Domroese, M. (1991). The use of neural networks determining operational policies for manufacturing systems. Journal of Manufacturing Systems, 10(2), 166–175.

    Article  Google Scholar 

  • Chryssolouris, G., Lee, M., & Ramsey, A. (1996). Confidence internal prediction for neural network models. IEEE Transactions on Neural Networks, 7(1), 229–232.

    Article  Google Scholar 

  • Daniel, T. (2012). Leap motion: 3D hands-free motion control, unbound. http://news.cnet.com/8301-11386_3-57437404-76/leap-motion-3d-hands-free-motion-control-unbound/.

  • Delice, I. I., & Ertugrul, S. (2007). Intelligent modeling of human driver: A survey. IEEE Intelligent Vehicles Symposium, 2007, 648–51.

    Google Scholar 

  • Ghanty, P., Vasudevan, M., Mukherjee, D. P., et al. (2008). Artificial neural network approach for estimating weld bead width and depth of penetration from infrared thermal image of weld pool. Science and Technology of Welding and Joining, 13(4), 395–401.

    Article  Google Scholar 

  • Hardt, D., & Katz, J. (1984). Ultrasonic measurement of weld penetration. Welding Journal, 63(9), 273s–281s.

    Google Scholar 

  • He, K., & Li, X. (2014). A quantitative estimation technique for welding quality using local mean decomposition and support vector machine. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0885-8.

  • Itoh, E., & Suzuki, S. (2005). Nonlinear approach for human internal models: Feedforward and feedback roles in pilot maneuver. In Systems, man and cybernetics 2005 IEEE international conference (Vol. 3, pp. 2455–2462).

  • Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.

    Article  Google Scholar 

  • Kim, W. S., Tendick, F., Ellis, S. R., & Stark, L. W. (1987). A comparison of position and ratecontrol of tele-manipulation with consideration of manipulator system dynamics. IEEE Journal of Robot Automation, 3, 426–436.

    Article  Google Scholar 

  • Liu, Y. K., Zhang, W. J., & Zhang, Y. M. (2013). Adaptive neuro-fuzzy inference system (ANFIS) modeling of human welder’s response to 3D weld pool surface in GTAW. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 135, 0210101–02101011.

    Google Scholar 

  • Liu, Y. K., Zhang, W. J., & Zhang, Y. M. (2014). Dynamic neuro-fuzzy based human intelligence modeling and control in GTAW. IEEE Transactions on Automation Science and Engineering, 12(1), 324–335.

    Article  Google Scholar 

  • Liu, Y. K., & Zhang, Y. M. (2013). Control of 3D weld pool surface. Control Engineering Practice, 21(11), 1469–1480.

    Article  Google Scholar 

  • Liu, Y. K., Zhang, Y. M., & Kvidahl, L. (2014a). Skilled human welder intelligence modeling and control: Part I—modeling. Welding Journal, 93, 46s–52s.

    Google Scholar 

  • Liu, Y. K., Zhang, Y. M., & Kvidahl, L. (2014b). Skilled human welder intelligence modeling and control: Part II—analysis and control applications. Welding Journal, 93, 162s–170s.

  • Liu, Y. K., & Zhang, Y. M. (2014a). Model-based predictive control of weld penetration in gas tungsten arc welding. IEEE Transactions on Control Systems Technology, 22(3), 955–966.

  • Liu, Y. K., & Zhang, Y. M. (2014b). Supervised learning of human welder behaviors for intelligent robotic welding. IEEE Transactions on Automation Science and Engineering. Under review.

  • Liu, Y. K., & Zhang, Y. M. (2014c). Control of human arm movement in machine–human cooperative welding process. Control Engineering Practice, 32, 161–171.

    Article  Google Scholar 

  • Liu, Y. K., & Zhang, Y. M. (2014). Iterative local ANFIS based human welder intelligence modeling and control in pipe GTAW process: A data-driven approach. IEEE/ASME Transactions on Mechatronics. doi:10.1109/TMECH.2014.2363050.

  • Liu, Y. K., & Zhang, Y. M. (2014). Toward welding robot with human knowledge: A remotely-controlled approach. IEEE Transactions on Automation Science and Engineering. doi:10.1109/TASE.2014.2359006.

  • Mavrikios, D., Karabatsou, V., Fragos, D., & Chryssolouris, G. (2006). A prototype virtual reality based demonstrator for immersive and interactive simulation of welding processes. International Journal of Computer Integrated Manufacturing, 19(3), 294–300.

    Article  Google Scholar 

  • O’Brien, R. (Ed.). (1998). Welding handbook (8th ed., Vol. 2). Welding Processes, AWS.

  • Pandremenos, J., & Chryssolouris, G. (2011). A neural network approach for the development of modular product architectures. International Journal of Computer Integrated Manufacturing, 24(10), 879–887.

    Article  Google Scholar 

  • Sarkheyli, A., Zain, A. M., & Sharif, S. (2013). A multi-performance prediction model based on ANFIS and new modified-GA for machining processes. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0828-9.

  • Singh, A., Datta, S., Mahapatra, S. S., Singha, T., & Majumdar, G. (2013). Optimization of bead geometry of submerged arc weld using fuzzy based desirability function approach. Journal of Intelligent Manufacturing, 24(1), 35–44.

    Article  Google Scholar 

  • Song, J. B., & Hardt, D. E. (1993). Closed-loop control of weld pool depth using a thermally based depth estimator. Welding Journal, 72(10), 471s–478s.

    Google Scholar 

  • Tanaka, K., Sano, M., & Watanabe, H. (1995). Modeling and control of carbon monoxide concentration using a neuro-fuzzy technique. IEEE Transactions on Fuzzy Systems, 3(3), 271–279.

    Article  Google Scholar 

  • Tsuji, T., & Tanaka, Y. (2005). Tracking control properties of human–robotic systems based on impedance control. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 35(4), 523–535.

    Article  Google Scholar 

  • Uttrachi, G. D. (2007). Welder shortage requires new thinking. Welding Journal, 86(1), 6.

    Google Scholar 

  • Wang, X. W., & Li, R. R. (2014). Intelligent modelling of back-side weld bead geometry using weld pool surface characteristic parameters. Journal of Intelligent Manufacturing, 25(6), 1301–1313.

    Article  Google Scholar 

  • Xiong, J., Zhang, G., Hu, J., & Wu, L. (2014). Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. Journal of Intelligent Manufacturing, 25(1), 157–163.

    Article  Google Scholar 

  • Yong, L. R. (1969). On adaptive manual control. IEEE Transaction on Man and Machine System, 10, 292–331.

    Article  Google Scholar 

  • Zhang, W., Liu, Y. K., Wang, X., & Zhang, Y. M. (2012). Characterization of three-dimensional weld pool surface in gas tungsten arc welding. Welding Journal, 91, 195s–203s.

    Google Scholar 

  • Zhang, Z., & Chen, S. (2014). Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0971-y.

Download references

Acknowledgments

This research is funded in part by the National Science Foundation (CMMI-0927707), National Natural Science Foundation of China (51375023) and the China Scholarship Council (201306540014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S.J., Huang, N., Liu, Y.K. et al. Machine assisted manual torch operation: system design, response modeling, and speed control. J Intell Manuf 28, 1249–1258 (2017). https://doi.org/10.1007/s10845-015-1047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1047-3

Keywords

Navigation