Skip to main content
Log in

Automated thermal fuse inspection using machine vision and artificial neural networks

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Machine vision is an excellent tool for inspecting a variety of items such as textiles, fruit, printed circuit boards, electrical components, labels, integrated circuits, machine tools, etc. This paper presents an intelligent system that incorporates machine vision with artificial intelligent networks to automatically inspect thermal fuses. An effective inspection flow is proposed to detect four commonly seen defects, including black-dot, small-head, bur, and flake during the production of thermal fuses. Backpropagation neural networks and learning vector quantization performance is compared in detecting the bur defect because of its illegibility. Different numbers of defective samples were screened out from a production line in a case study company and used to demonstrate the efficacy of the proposed system. Currently, the proposed inspection system is operating at the case study company, replacing four to six human inspectors. The system not only ensures the quality of the thermal fuses produced, but also reduced the cost of manual visual inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43, 3–31.

    Article  Google Scholar 

  • Benedek, C., Krammer, O., Janóczki, M., & Jakab, L. (2013). Solder paste scooping detection by multilevel visual inspection of printed circuit boards. IEEE Transactions on Industrial Electronics, 60(6), 2318–2331.

    Article  Google Scholar 

  • Chang, C. Y., Li, C. H., Chang, Y. C., & Jeng, M. (2011). Wafer defect inspection by neural analysis of region features. Journal of Intelligent Manufacturing, 22(6), 953–964.

    Article  Google Scholar 

  • Chen, S., Lin, B., Han, X., & Liang, X. (2012). Automated inspection of engineering ceramic grinding surface damage based on image recognition. International Journal of Advanced Manufacturing Technology, 66, 431–443.

    Article  Google Scholar 

  • Chin, R. T., & Harlow, C. A. (1982). Automated visual inspection: A survey. IEEE Transaction on Pattern Analysis and Machine Intelligence, 4(6), 557–573.

    Article  Google Scholar 

  • Chin, R. T. (1988). Automated visual inspection: 1981 to 1987. Computer Vision, Graphics, and Image Processing, 41(3), 346–381.

    Article  Google Scholar 

  • Gan, Y., & Zhao, Q. (2013). An effective defect inspection method for LCD using active contour model. IEEE Transactions on Instrumentation and Measurement, 62(9), 2438–2445.

    Article  Google Scholar 

  • Ghorai, S., Mukherjee, A., Gangadaran, M., & Dutta, P. K. (2013). Automatic defect detection on hot-rolled flat steel products. IEEE Transactions on Instrumentation and Measurement, 62(3), 612–621.

    Article  Google Scholar 

  • He, L., Chao, Y., Suzuki, K., & Wu, K. (2009). Fast connected-component labeling. Pattern Recognition, 42(9), 1977–1987.

    Article  Google Scholar 

  • Kumar, S. (2004). Neural networks—A classroom approach. New York: Tata McGrawHill Publishing.

    Google Scholar 

  • Lahajnar, F., Bernard, R., Pernus, F., & Kovacic, S. (2002). Machine vision system for inspecting electric plates. Computer in Industry, 47(1), 113–122.

    Article  Google Scholar 

  • Li, W. C., & Tsai, D. M. (2012). Wavelet-based defect detection in solar wafer images with inhomogeneous texture. Pattern Recognition, 45, 742–756.

    Google Scholar 

  • Li, X., & Tso, S. K. (2006). Improving automatic detection of defects in castings by applying wavelet technique. IEEE Transactions on Industrial Electronics, 53(6), 1927–1934.

    Article  Google Scholar 

  • Liang, Y., Gao, J., Jian, C., & Chen, X. (2012). Online visual inspection system for OLED defects. Applied Mechanics and Materials, 241–244, 3153–3158.

    Article  Google Scholar 

  • Lin, H. D. (2007). Automated visual inspection of ripple defects using wavelet characteristic based multivariate statistical approach. Image and Vision Computing, 25(11), 1785–1801.

    Article  Google Scholar 

  • Malamas, E. N., Petrakis, E. G. M., Zervakis, M., Petit, L., & Legat, J. D. (2003). A survey on industrial vision systems, applications and tools. Image and Vision Computing, 21(2), 171–188.

    Article  Google Scholar 

  • Newman, T. S., & Jain, A. K. (1995). A survey of automated visual inspection. Computer Vision and Image Understanding, 61(2), 231–262.

    Article  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 9(1), 62–66.

    Article  Google Scholar 

  • Prijic, A., Prijic, Z., Pesic, B., Pantic, D., Ristic, S., Macic, D., et al. (2008). Design and optimization of S-type thermal cutoffs. IEEE Transactions on Components and Packaging Technologies, 31(4), 904–912.

    Article  Google Scholar 

  • Scholz-Reiter, B., Weimer, D., & Thamer, H. (2012). Automated surface inspection of cold-formed micro-parts. CIRP Annals: Manufacturing Technology, 61, 531–534.

    Article  Google Scholar 

  • Shen, H., Li, S., Gu, D., & Chang, Hongxing. (2012). Bearing defect inspection based on machine vision. Measurement, 45, 719–733.

    Article  Google Scholar 

  • Steiner, D., & Katz, R. (2007). Measurement techniques for the inspection of porosity flaws on machined surfaces. Journal of Computing and Information Science in Engineering, 7, 85–94.

    Google Scholar 

  • Su, L., Zha, Z., Lu, X., Shi, T. L., & Liao, G. G. (2013). Using BP network for ultrasonic inspection of flip chip solder joints. Mechanical Systems and Signal Processing, 34, 183–190.

    Article  Google Scholar 

  • Sun, T. H., Tang, C. H., & Tien, F. C. (2011). Measuring the roundness of silicon wafers using the HJ-PSO algorithm. IEEE Transactions on Semiconductor Manufacturing, 24, 80–88.

    Article  Google Scholar 

  • Sun, T. H., Tseng, C. C., & Chen, M. S. (2010). Electric contacts inspection using machine vision. Image and Vision Computing, 28(6), 890–901.

    Article  Google Scholar 

  • Thomas, A. D. H., Rodd, M. G., Hold, J. D., & Neill, C. J. (1995). Real-time industrial visual inspection: A review. Real-Time Image, 1(2), 139–158.

    Article  Google Scholar 

  • Tien, F. C., Yeh, C. H., & Hsieh, K. H. (2004). Automated visual inspection for microdrills in printed circuit board production. International Journal of Production Research, 15, 2477–2495.

    Article  Google Scholar 

  • Tolba, A. S. (2011). Fast defect detection in homogeneous flat surface products. Expert Systems with Applications, 38, 12339–12347.

    Article  Google Scholar 

  • Torres, F., Jiménez, L. M., Candelas, F. A., Azorín, J. M., & Agulló, R. J. (2002). Automatic inspection for phase-shift reflection defects in aluminum web production. Journal of Intelligent Manufacturing, 13(3), 151–156.

    Article  Google Scholar 

  • Wang, M. J., Wu, W. Y., & Hsu, C. C. (2002). Automated post bonding inspection by using machine vision techniques. International Journal of Production Research, 40(12), 2835–2848.

    Article  Google Scholar 

  • Wu, W. Y., & Hou, C. C. (2003). Automated metal surface inspection through machine vision. Imaging Science Journal, 51(2), 79–88.

    Google Scholar 

  • Xie, Y., Ye, Y., Zhang, J., Liu, L., & Liu, L. (2014). A physics-based defects model and inspection algorithm for automatic visual inspection. Optics and Lasers in Engineering, 52, 218–223.

    Article  Google Scholar 

  • Yamashina, H., & Okumura, S. (1996). A machine vision system for measuring wear and chipping of drilling tools. Journal of Intelligent Manufacturing, 7(4), 319–327.

    Article  Google Scholar 

  • Zhang, X., Tsang, W.-M., Yamazaki, K., & Mori, M. (2013a). A study on automatic on-machine inspection system for 3D modeling and measurement of cutting tools. Journal of Intelligent Manufacturing, 24(1), 71–86.

    Article  Google Scholar 

  • Zhang, Z., Wang, Y., & Wang, K. (2013b). Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network. Journal of Intelligent Manufacturing, 24, 1213–1227.

    Article  Google Scholar 

  • Zheng, H., Kong, L. X., & Nahavandi, S. (2002). Automatic inspection of metallic surface defects using genetic algorithms. Journal of Materials Processing Technology, 125–126, 427–433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Chih Tien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, TH., Tien, FC., Tien, FC. et al. Automated thermal fuse inspection using machine vision and artificial neural networks. J Intell Manuf 27, 639–651 (2016). https://doi.org/10.1007/s10845-014-0902-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0902-y

Keywords

Navigation