Skip to main content

Advertisement

Log in

Decision-making in the manufacturing environment using a value-risk graph

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

A value-risk based decision-making tool is proposed for performance assessment of manufacturing scenarios. For this purpose, values (i.e. qualitative objective statements) and concerns (i.e. qualitative risk statements) of stakeholders in any given manufacturing scenario are first identified and are made explicit via objective and risk modeling. Next, performance and risk measures are derived from the corresponding objective and risk models to evaluate the scenario under study. After that, upper and lower bounds, and target value is defined for each measure in order to determine goals and constraints for the given scenario. Because of the multidimensionality nature of performance, the identified objectives and risks, and so, their corresponding measures are usually numerous and heterogeneous in nature. These measures are therefore consolidated to obtain a global performance indicator of value and global indicator of risk while keeping in views the inter-criteria influences. Finally, the global indicators are employed to develop minimum acceptable value and maximum acceptable risk for the scenario under study and plotted on the VR-Graph to demarcate zones of “highly desirable”, “feasible”, “and risky” as well as the “unacceptable” one. The global scores of the indicators: (value-risk) pair of the actual scenario is then plotted on the defined VR-Graph to facilitate decision-making by rendering the scenarios’ performance more visible and clearer. The proposed decision-making tool is illustrated with an example from manufacturing setup in the process context but it can be extended to product or systems evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdi, M. R. (2009). Fuzzy multi-criteria decision model for evaluating reconfigurable machines. International Journal of Production Economics, 117(1), 1–15.

    Article  Google Scholar 

  • Amid, A., Ghodsypour, S. H., & O’Brien, C. (2009). A weighted additive fuzzy multi-objective model for the supplier selection problem under price breaks in a supply Chain. International Journal of Production Economics, 121(2), 323–332.

    Article  Google Scholar 

  • Amoako-Gyampah, K., & Acquaah, M. (2008). Manufacturing strategy, competitive strategy and firm performance: An empirical study in a developing economy environment. International Journal of Production Economics, 111(2), 575–592.

    Article  Google Scholar 

  • Anselmetti, B. (2008). Manuel de tolérancement: (Vol. 2). Bases de la cotation fonctionnelle: Hermès Science Publications, Paris (in French).

  • Bana e Costa, C., De Corte, J.-M., & Vansnick, J.-C. (2005). On the mathematical foundation of MACBETH. In Multiple criteria decision analysis: State of the art surveys (pp. 409–437).

  • Bana e Costa, C. A., De Corte, J.-M., & Vansnick, J.-C. (2012). MACBETH. International Journal of Information Technology and Decision Making, 11(02), 359–387.

    Article  Google Scholar 

  • Banks, J. (1998). Handbook of simulation: Principles, methodology, advances, applications, and practice (1st ed.). London: Wiley-Interscience.

    Book  Google Scholar 

  • Beliakov, G., Pradera, A., & Calvo, T. (2010). Aggregation functions: A guide for practitioners. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Berrah, L. (2002). L’indicateur de performance: Concepts et applications. Editions Cépaduès.

  • Bitton, M. (1990). ECOGRAI: Méthode de conception et d’implantation de systèmes de mesure de performances pour organisations industrielles. Doctoral dissertation, University of Bordeaux, France.

  • Bosilj-Vuksic, V., Ceric, V., & Hlupic, V. (2007). Criteria for the evaluation of business process simulation tools. Interdisciplinary Journal of Information, Knowledge, and Management, 2, 73–88.

    Google Scholar 

  • Chan, F. T. S., Jiang, B., & Tang, N. K. H. (2000). The development of intelligent decision support tools to aid the design of flexible manufacturing systems. International Journal of Production Economics, 65(1), 73–84.

    Article  Google Scholar 

  • Clivillé, V., Berrah, L., & Mauris, G. (2007). Quantitative expression and aggregation of performance measurements based on the MACBETH multi-criteria method. International Journal of Production Economics, 105(1), 171–189.

    Article  Google Scholar 

  • Cokins, G. (2012). Kaplan and Norton’s future vision of the Balanced Scorecard. Closing the Intelligence Gap. http://blogs.sas.com/content/cokins/2012/04/17/kaplan-and-nortons-future-vision-of-the-balanced-scorecard. Accessed Jan 21, 2013

  • Curtis, B., Kellner, M., & Over, J. (1992). Process modeling. Communications of the ACM, 35(9), 75–90.

    Article  Google Scholar 

  • Demirtas, E. A., & Üstün, Ö. (2008). An integrated multi-objective decision making process for supplier selection and order allocation. Omega, 36(1), 76–90.

    Article  Google Scholar 

  • Dixon, J. R., Nanni, A. J., & Vollmann, T. E. (1990). The new performance challenge: Measuring operations for world-class competition. Illinois: Dow Jones-Irwin Homewood.

    Google Scholar 

  • Ducq, Y., & Vallespir, B. (2005). Definition and aggregation of a performance measurement system in three aeronautical workshops using the ECOGRAI method. Production Planning and Control, 16(2), 163–177.

    Article  Google Scholar 

  • Durand, T. (1993). Economy of scope, added value chain and cost dynamics: A tentative optimization model. International Journal of Production Economics, 29, 237–247.

    Article  Google Scholar 

  • Ertay, T., & Ruan, D. (2005). Data envelopment analysis based decision model for optimal operator allocation in CMS. European Journal of Operational Research, 164(3), 800–810.

    Article  Google Scholar 

  • Etienne, A. (2007). Intégration Produit/Process par les concepts d’activités et de caractéristiques clés-Application à l’optimisation de l’allocation des tolérances géométriques. Doctoral dissertation, University of Paul Verlain, Metz, France.

  • Ertuğrul, İ., & Karakaşoğlu, N. (2009). Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert Systems with Applications, 36(1), 702– 715.

    Article  Google Scholar 

  • Farahani, R. Z., & Asgari, N. (2007). Combination of MCDM and covering techniques in a hierarchical model for facility location: A case study. European Journal of Operational Research, 176(3), 1839–1858.

    Article  Google Scholar 

  • Fortuin, L. (1988). Performance indicators: Why, where and how? European Journal of Operational Research, 34(1), 1–9.

    Article  Google Scholar 

  • Globerson, S. (1985). Issues in developing a performance criteria system for an organization. International Journal of Production Research, 23(4), 639–646.

    Article  Google Scholar 

  • Grabisch, M., & Labreuche, C. (2010). A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Annals of Operations Research, 175(1), 247–286.

    Article  Google Scholar 

  • Greco, S. (2004). Multiple criteria decision analysis: State of the art surveys. New York: Springer.

    Google Scholar 

  • Hao, Q., & Shen, W. (2008). Implementing a hybrid simulation model for a Kanban-based material handling system. Robotics and Computer-Integrated Manufacturing, 24(5), 635–646.

    Article  Google Scholar 

  • Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1), 16–24.

    Article  Google Scholar 

  • Jablonsky, J. (2007). Measuring the efficiency of production units by AHP models. Mathematical and Computer Modelling, 46(7–8), 1091–1098.

    Article  Google Scholar 

  • Jolai, F., Rezaee, M. J., & Vazifeh, A. (2009). Multi-criteria decision making for assembly line balancing. Journal of Intelligent Manufacturing, 20, 113–121.

    Article  Google Scholar 

  • Kaplan, S., & Garrick, B. J. (1981). On the quantitative definition of risk. Risk Analysis, 1(1), 11–27.

    Google Scholar 

  • Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard—measures that drive performance. Harvard Business Review, 70(1), 71–79.

    Google Scholar 

  • Kaplan, R. S., & Norton, D. P. (1996). Using the balanced scorecard as a strategic management system. Harvard Business Review, 74(1), 75–85.

    Google Scholar 

  • Kaplan, R. S., & Norton, D. P. (2004). Measuring the strategic readiness of intangible assets. Harvard Business Review, 82, 52–63.

    Google Scholar 

  • Keeney, R. L., & Raïffa, H. (1993). Decisions with multiple objectives: Preferences and value tradeoffs. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Keeney, R. (1996). Value-focused thinking: Identifying decision opportunities and creating alternatives. European Journal of Operational Research, 92(3), 537–549.

    Article  Google Scholar 

  • Kirkwood, C. W., & Sarin, R. K. (1980). Preference conditions for multiattribute value functions. Operations Research, 28(1), 225–232.

    Article  Google Scholar 

  • Labreuche, C., & Grabisch, M. (2003). The Choquet integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets and Systems, 137, 11–26.

    Article  Google Scholar 

  • Larson, N., & Kusiak, A. (1996a). System reliability methods for analysis of process models. Integrated Computer-Aided Engineering, 3, 279–291.

    Google Scholar 

  • Larson, N., & Kusiak, A. (1996b). Managing design processes: A risk assessment approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems and Humans, 26(6), 749–759.

    Article  Google Scholar 

  • Li, T.-S., & Huang, H.-H. (2009). Applying TRIZ and Fuzzy AHP to develop innovative design for automated manufacturing systems. Expert Systems with Applications, 36(4), 8302–8312.

    Article  Google Scholar 

  • Low, C., Yip, Y., & Wu, T.-H. (2006). Modelling and heuristics of FMS scheduling with multiple objectives. Computers and Operations Research, 33, 674–694.

    Article  Google Scholar 

  • Lynch, R., & Cross, K. (1995). Measure Up!: Yardsticks for continuous improvement. Cambridge: Blackwell Business.

    Google Scholar 

  • Lynch, R. L., & Cross, K. F. (1992). The SMART way to define and sustain success. National Productivity Review, 8(1), 23–33.

  • Malakooti, B. (2011). Systematic decision process for intelligent decision making. Journal of Intelligent Manufacturing, 22, 627–642.

    Article  Google Scholar 

  • Maskell, B. H. (1991). Performance measurement for world class manufacturing: A model for American companies (1st ed.). Cambridge: Productivity Press.

    Google Scholar 

  • Mun, J. (2006). Modeling risk: Applying Monte Carlo simulation, real options analysis, forecasting, and optimization techniques. Wiley Finance.

  • Neely, A. D., Adams, C., & Kennerley, M. (2002). The performance prism: The scorecard for measuring and managing business success. London: Financial Times Prentice Hall.

    Google Scholar 

  • Neiger, D., Churilov, L., & Flitman, A. (2008). Value-focused business process engineering: A systems approach: With applications to human resource management. Berlin: Springer.

    Google Scholar 

  • Özcan, U., & Toklu, B. (2009). Multiple-criteria decision-making in two-sided assembly line balancing: A goal programming and a fuzzy goal programming models. Computers and Operations Research, 36, 1955–1965.

    Article  Google Scholar 

  • Pang, B., & Bai, S. (2013). An integrated fuzzy synthetic evaluation approach for supplier selection based on analytic network process. Journal of Intelligent Manufacturing, 24(1), 163–174.

    Google Scholar 

  • Pokharel, S. (2008). A two objective model for decision making in a supply chain. International Journal of Production Economics, 111(2), 378–388.

    Article  Google Scholar 

  • Rao, R. V. (2011). Advanced modeling and optimization of manufacturing processes international research and development. London, New York: Springer.

    Book  Google Scholar 

  • Robinson, S., Brooks, R., & Kotiadis, K. (2010). Conceptual modeling for discrete-event simulation (1st ed.). Boca Raton, FL, USA: CRC Press.

    Book  Google Scholar 

  • Santos, S. P., Belton, V., & Howick, S. (2002). Adding value to performance measurement by using system dynamics and multicriteria analysis. International Journal of Operations and Production Management, 22(11), 1246–1272.

    Article  Google Scholar 

  • SCOR. (2012). SCOR Version 11.0. http://www.supply-chain.org. Accessed Dec 7, 2013

  • Shah, L. A. (2012). Value/risk-based performance evaluation of industrial systems. Doctoral dissertation, Ecole nationale supérieure d’arts et métiers-ENSAM, France.

  • Shah, L., Etienne, A., Siadat, A., & Vernadat, F. (2012). (Value, risk)-based performance evaluation of manufacturing processes. Information Control Problems in Manufacturing, 14(1), 1586–1591.

    Google Scholar 

  • Sienou, A. (2009). Proposition d’un cadre méthodologique pour le management intégré des risques et des processus d’entreprise. Doctoral. dissertation, University of Toulouse, France.

  • Sormaz, D. N., & Khoshnevis, B. (2003). Generation of alternative process plans in integrated manufacturing systems. Journal of Intelligent Manufacturing, 14(6), 509–526.

    Article  Google Scholar 

  • Taha, Z., & Rostam, S. (2012). A hybrid fuzzy AHP-PROMETHEE decision support system for machine tool selection in flexible manufacturing cell. Journal of Intelligent Manufacturing, 23(6), 2137–2149.

    Google Scholar 

  • Tseng, F.-M., Chiu, Y.-J., & Chen, J.-S. (2009). Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan’s large-sized TFT-LCD panel companies. Omega, 37(3), 686–697.

    Article  Google Scholar 

  • Tuncel, G., & Alpan, G. (2010). Risk assessment and management for supply chain networks: A case study. Computers in Industry, 61(3), 250–259.

    Google Scholar 

  • Vernadat, F., Shah, L., Etienne, A., & Siadat, A. (2013). VR-PMS: A new approach for performance measurement and management of industrial systems. International Journal of Production Research, 51(23–24), 7420–7438.

    Google Scholar 

  • Wernz, C., & Deshmukh, A. (2012). Unifying temporal and organizational scales in multiscale decision-making. European Journal of Operational Research, 223(3), 739–751.

    Article  Google Scholar 

  • Yu, V. F., & Hu, K.-J. (2010). An integrated fuzzy multi-criteria approach for the performance evaluation of multiple manufacturing plants. Computers and Industrial Engineering, 58(2), 269–277.

    Article  Google Scholar 

  • Zolghadri, M., Olivier, C., & Bourrières, J.-P. (2008). Close-optimal production and procurement policy for a X-network of added value using lexicographic linear goal programming. Computers and Industrial Engineering, 54(4), 821–839.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, L.A., Etienne, A., Siadat, A. et al. Decision-making in the manufacturing environment using a value-risk graph. J Intell Manuf 27, 617–630 (2016). https://doi.org/10.1007/s10845-014-0895-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0895-6

Keywords

Navigation