Skip to main content
Log in

Survey on assembly sequencing: a combinatorial and geometrical perspective

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

A systematic overview on the subject of assembly sequencing is presented. Sequencing lies at the core of assembly planning, and variants include finding a feasible sequence—respecting the precedence constraints between the assembly operations—, or determining an optimal one according to one or several operational criteria. The different ways of representing the space of feasible assembly sequences are described, as well as the search and optimization algorithms that can be used. Geometry plays a fundamental role in devising the precedence constraints between assembly operations, and this is the subject of the second part of the survey, which treats also motion in contact in the context of the actual performance of assembly operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abegg, F., Engel, D., & Wörn, H. (1999). Manipulating deformable linear objects—vision-based recognition of contact state transitions. In: The Ninth international conference on advanced robotics (pp. 135–140).

  • Acker, J., & Henrich, D. (2005). Manipulation of deformable linear objects: From geometric model towards program generation. In: Proceedings of the IEEE international conference on robotics and automation (pp. 1541–1547).

  • Almgren, R. (1994). Comparative topological modeling and analysis of assemblies and assembly systems—an aid in computerized assembly planning. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 1468–1475).

  • Bagchi A., Mahanti A. (1983) Admissible heuristic search in and/or graphs. Theoretical Computer Science 24: 207–219

    Article  Google Scholar 

  • Ben-Arieh D., Kumar R. R., Tiwari M. K. (2004) Analysis of assembly operations difficulty using enhanced expert high-level colored fuzzy petri net model. Robotics and Computer-Integrated Manufacturing 20(5): 385–403. doi:10.1016/j.rcim.2004.03.002

    Article  Google Scholar 

  • Bonneville, F., Henrioud, J., & Bourjault, A. (1995). Generation of assembly sequences with ternary operations. IEEE international symposium on assembly and aask planning (pp. 245–249). doi:10.1109/ISATP.1995.518778.

  • Bourjault, A. (1984). Contribution a une approche methodologique de l’assemblage automatise: Elaboration automatique des sequences operatoires. PhD thesis, Universite de Franche-Compte.

  • Bruyninckx, H., Lefebvre, T., Mihaylova, L., Staffetti, E., Schutter, J. D., & Xiao J. (2001) A roadmap on autonomous robotic assembly. In: IEEE proceedings of the international symposium on assembly and task planning (pp. 49–54). doi:10.1109/ISATP.2001.928965.

  • Cao P. B., Xiao R. B. (2007) Assembly planning using a novel immune approach. The International Journal of Advanced Manufacturing Technology 31(7–8): 770–782. doi:10.1007/s00170-005-0235-2

    Google Scholar 

  • Cao T., Sanderson A. C. (1998) And/or net representation for robotic task sequence planning. IEEE Transaction on Systems, Man and Cybernetics, Part C Appliccations and Reviews 28(8): 104–218

    Google Scholar 

  • Caselli, S., & Zanichelli, F. (1995). On assembly sequence planning using Petri Nets. In: IEEE proceedings of the international symposium on assembly and task planning (pp. 239–244).

  • Cem Sinanoglu H. R. B. (2005) An assembly sequence-planning system for mechanical parts using neural network. Assembly Automation 25(1): 38–52. doi:10.1108/01445150510578996

    Article  Google Scholar 

  • Chakrabarty S., Wolter J. (1997) A structure-oriented approach to assembly sequence planning. IEEE Transactions on Robotics and Automation 13(1): 14–29. doi:10.1109/70.554344

    Article  Google Scholar 

  • Chen C. L. P. (1992) Design of a real-time and/or assembly scheduler on an optimization neural network. Journal of Intelligent Manufacturing 3(4): 251–261. doi:10.1007/BF01473902

    Article  Google Scholar 

  • Chen S. F., Liu Y. J. (2001) The application of multi-level genetic algorithms in assembly planning. Journal of Industrial Technology 17(4): 1–9

    Google Scholar 

  • Chen W. C., Tai P. H., Deng W. J., Hsieh L. F. (2008) A three-stage integrated approach for assembly sequence planning using neural networks. Expert Systems with Applications 34(3): 1777–1786. doi:10.1016/j.eswa.2007.01.034

    Article  Google Scholar 

  • Choset H., Lynch K. M., Hutchinson S., Kantor G. A., Burgard W., Kavraki L. E., Thrun S. (2005) Principles of robot motion: Theory, algorithms, and implementations. MIT Press, Cambridge, MA

    Google Scholar 

  • Cui, J. G. P. W. N. (2007). Adaptive ant colony algorithm for on-orbit assembly planning. In: Proceedings of the 2nd IEEE conference on industrial electronics and applications (pp. 1590–1593). doi:10.1109/ICIEA.2007.43186.76.

  • Dakin, G. A. (1994). Fine-motion planning for robotic assembly in local contact space. PhD thesis, University of Massachussets Amherst.

  • De-Lit P., Latinne P., Rekiek B., Delchambre A. (2001) Assembly planning with an ordering genetic algorithm. International Journal of Production Research 39(16): 3623–3640. doi:10.1080/00207540110056135-005-0235-2

    Article  Google Scholar 

  • de Mello, L. S. H., & Sanderson, A. C. (1989) A correct and complete algorithm for the generation of mechanical assembly sequences. In: Proceedings IEEE international conference on robotics and automation (ICRA), (vol. 1, pp. 56–61). doi:10.1109/ROBOT.1989.99967.

  • de Mello L. S. H., Sanderson A. C. (1991) Representations of mechanical assembly sequences. IEEE Transactions on Robotic and Automation 7(2): 211–227. doi:10.1109/70.75904

    Article  Google Scholar 

  • Desai, R., Xiao, J., & Volz, R. (1988). Contact formations and design constraints: A new basis for the automatic generation of robot programs. In: NATO ARW: CAD based programming for sensory based robots, (pp. 361–395).

  • Deshmukh A., Yung J. P., Wang H. P. (1993) Automated generation of assembly sequence based on geometric and functional reasoning. Journal of Intelligent Manufacturing 4(4): 269–284. doi:10.1007/BF00124140

    Article  Google Scholar 

  • Dini G., Failli F., Lazzerini B., Marcelloni F. (1999) Generation of optimized assembly sequences using genetic algorithms. Annals of the CIRP 48: 17–20

    Article  Google Scholar 

  • Donald, B. R. (1985). On motion planning with six degrees of freedom: Solving the intersection problems in configuration space. In: Proceedings of the IEEE international conference on robotics and automation (pp. 536–541).

  • Dong, T., Tong, R., Dong, J., & Zhang, L. (2003). Knowledge-based assembly sequence planning system. In: Proceedings of the 8th international conference on computer supported cooperative work in design (pp. 516–521).

  • Fazio T. L. D., Whitney D. E. (1987) Simplified generation of all mechanical assembly sequences. IEEE Journal of Robotics and Automation RA-3(6): 640–658

    Article  Google Scholar 

  • Giraud, A., & Sidobre, D. (1992). A heuristic motion planner using contact for assembly. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 2165–2170).

  • Goldwasser M. H., Motwani R. (1999) Complexity measures for assembly sequences. International Journal of Computational Geometry and Application 9(4/5): 371–417

    Article  Google Scholar 

  • Guan Q., Liu J. H., Zhong Y. H. (2002) A concurrent hierarchical evolution approach to assembly process planning. International Journal of Production Research 40(14): 3357–3374. doi:10.1080/00207540210146152

    Article  Google Scholar 

  • Guibas, L. J., Halperin, D., Hirukawa, H., Latombe, J. C., & Wilson, R. H. (1995). A simple and efficient procedure for polyhedral assembly partitioning under infinitesimal motions. In: Proceedings of the IEEE international conference on robotics and automation) (pp. 2553–2560).

  • Halperin D., Latombe J. C., Wilson R. (2000) A general framework for assembly planning: The motion space approach. Algorithmica 26: 577–601. doi:10.1007/s004539910025

    Article  Google Scholar 

  • Heger, F. W. (2008). Generating robust assembly plans in constrained environments. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 4068–4073).

  • Hong D., Cho H. (1995) A neural-network-based computational scheme for generating optimized robotic assembly sequences. Engineering Applications of Artificial Intelligence 8(2): 129– 145

    Article  Google Scholar 

  • Hong, D., & Cho, H. (1999). Generation of robotic assembly sequences using a simulated annealing. In: Proceedings of the 1999 IEEE/RSJ international conference on intelligent robots and systems (pp. 1247–1252).

  • Huang, Y., & Lee, C. (1991) A framework of knowledge-based assembly planning. In: IEEE international conference on robotics and automation, (vol. 1, pp. 599–604). doi:10.1109/ROBOT.1991.131647.

  • Ji P., Choi A. C., Tu L. (2002) Vdas: A virtual design and assembly system in a virtual reality environment. Assembly Automation 22(4): 337–342

    Article  Google Scholar 

  • Ji X., Xiao J. (2001a) Planning motions compliant to complex contact states. International Journal of Robotic Research 20(6): 446–465

    Article  Google Scholar 

  • Ji X., Xiao J. (2001b) Random sampling of contact configurations in two-pc contact formations. In: Lynch K., Donald B. R., Rus D. (eds) New directions in algorithmic and computational robotics. Kluwer, Boston

    Google Scholar 

  • Jiménez P., Torras C. (2000) An efficient algorithm for searching implicit and/or graphs with cycles. Artificial Intelligence 124(1): 1–30

    Article  Google Scholar 

  • Jones, R. E., & Wilson, R. H. (1996) A survey of constraints in automated assembly planning. In: Proceedings of the IEEE international conference on robotics and automation (pp. 1525–1532) Minneaopolis (MN), USA.

  • Kim J. Y., Cho H. S. (2000) A neural net-based assembly algorithm for flexible parts assembly. Journal of Intelligent and Robotic Systems 29(2): 133–160. doi:10.1023/A:1008115522778

    Article  Google Scholar 

  • Kuniyoshi, Y., Inaba, M., & Inoue, H. (1994) Learning by watching: Extracting reusable task knowledge from visual observation of human performance. IEEE transactions on robotics and automation, 10(6), 799–822. citeseer.ist.psu.edu/kuniyoshi94learning.html.

  • Lai H. Y., Huang C. T. (2004) A systematic approach for automatic assembly sequence plan generation. The International Journal of Advanced Manufacturing Technology 24(9–10): 752–763. doi:10.1007/s00170-003-1760-5

    Article  Google Scholar 

  • Latombe J. C. (1991) Robot motion planning, vol. SECS 0124. Kluwer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • LaValle, S. M. (2006). Planning algorithms. Cambridge University Press, Cambridge, UK. Available at http://planning.cs.uiuc.edu/.

  • Le, D. T., Cortés, J., Siméon, T. (2009). A path planning approach to (dis)assembly sequencing. In: Proceedings of the fifth IEEE international conference on automation science and engineering (pp. 286–291).

  • Lee B., Saitou K. (2003) Decomposition-based assembly synthesis for in-process dimensional adjustability. Journal of Mechanical Design 125(3): 464–473. doi:10.1115/1.1587746

    Article  Google Scholar 

  • Lee, S., & Moradi, H. (1999) Disassembly sequencing and assembly sequence verification using force flow networks. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 2762–2767).

  • Lee S., Shin Y. G. (1990) Assembly planning based on geometric reasoning. Computation and Graphics 14(2): 237–250

    Article  Google Scholar 

  • Lefebvre, T., Bruyninckx, H., & Schutter, J. D. (2003). Active sensing for the identification of geometrical parameters during autonomous compliant motion. In: Proceedings IEEE international conference on robotics and automation (ICRA) (pp. 2599– 2604).

  • Lefebvre T., Bruyninckx H., Schutter J. D. (2005) Task planning with active sensing for autonomous compliant motion. International Journal of Robotic Research 24(1): 61–81

    Article  Google Scholar 

  • Lefebvre T., Xiao J., Bruyninckx H., de Gersem G. (2005) Active compliant motion: A survey. Advanced Robotics 19(5): 479–499

    Article  Google Scholar 

  • Lu, T., Zhang, B., & Jia, P. (1993). Assembly sequence planning based on graph reduction. In: Proceedings of the IEEE TENCON (pp. 119–122)

  • Mahanti A, Bagchi A (1985) And/or graph heuristic search methods. Journal of Association for Computing Machinery 32(1): 28–51

    Article  Google Scholar 

  • Mantripragada R., Whitney D. E. (1998) The datum flow chain: A systematic approach to assembly design and modeling. Research in Engineering Design 10(3): 150–165. doi:10.1007/BF01607157

    Article  Google Scholar 

  • Marian, R. M. (2003) Optimisation of assembly sequences using genetic algorithms. PhD thesis, University of South Australia, Adelaide, Australia

  • Marian R. M., Luong L. H. S., Abhary K. (2006) A genetic algorithm for the optimisation of assembly sequences. Computers & Industrial Engineering 50: 503–527. doi:10.1016/j.cie.2005.07.007

    Article  Google Scholar 

  • Martelli, A., & Montanari, U. (1973). Additive and/or graphs. In: Proceedings of the third international joint conference on artificial intelligence (pp. 1–11).

  • Martelli A., Montanari U. (1978) Optimizing decision trees through heuristically guided search. Communications of the ACM 21(12): 1025–1039

    Article  Google Scholar 

  • Meeussen, W., Xiao, J., Schutter, J. D., Bruyninckx, H., & Staffetti, E. (2004). Automatic verification of contact states taking into account manipulator constraints. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 3583–3588). doi:10.1109/ROBOT.2004.1308808.

  • Meeussen, W., Schutter, J. D., Bruyninckx, H., Xiao, J., & Staffetti, E. (2005). Integration of planning and execution in force controlled compliant motion. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1217–1222). doi:10.1109/IROS.2005.1545360.

  • Meeussen W., Rutgeerts J., Gadeyne K., Bruyninckx H., Schutter J. D. (2007) Contact-state segmentation using particle filters for programming by human demonstration in compliant-motion tasks. IEEE Transactions on Robotics 23(2): 218–231

    Article  Google Scholar 

  • Mihaylova, L., Lefebvre, T., Staffetti, E., Bruyninckx, H., & Schutter, J. D. (2001). Tracking contact transitions during force-controlled compliant motion using an interacting multiple model estimator. In: Proceedings of the IEEE international conference on advanced robotics (pp. 665–670).

  • Möhring R. H., Skutella M., Stork F. (2004) Scheduling with and/or precedence constraints. SIAM Journal on Computing 33(2): 393–415

    Article  Google Scholar 

  • Mosemann, H., Bierwirth, T., Wahl, F. M., & Stoeter, S. (2000). Generating polyhedral convex cones from contact graphs for the identification of assembly process states. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 744–749).

  • Motavalli S., Islam A. U. (1997) Multi-criteria assembly sequencing. Computer and Industrial Engineering 32(4): 743–751. doi:10.1016/S0360-8352(97)00014-4

    Article  Google Scholar 

  • Naphade, K. S., Storer, R. H., & Wu, S. D. (1999a). Graph-theoretic generation of assembly plans, part i: Correct generation of precedence graphs. Technical Report IMSE Technical Report 99T-003, Lehigh University, Bethlehem, Pennsylvania.

  • Naphade, K. S., Storer, R. H., & Wu, S. D. (1999b). Graph-theoretic generation of assembly plans, part ii: Problem decomposition and optimization algorithms. Technical Report IMSE Technical Report 99T-003, Lehigh University, Bethlehem, Pennsylvania.

  • Nilsson N. J. (1980) Principles of Artificial Intelligence. Tioga, Palo Alto

    Google Scholar 

  • Raghavan V., Moloineros J., Sharma R. (1999) Interactive evaluation of assembly sequences using augmented reality. IEEE Transactions on Robotics and Automation 15(3): 435–449

    Article  Google Scholar 

  • Ramos, C., ao Rocha, J., & Vale, Z. (2001). A complete complexity study of one-processor assembly and manufacturing planning tasks. In: Proceedings of the 4th IEEE international symposium on assembly and task planning (pp. 369–374).

  • Remde, A., Henrich, D., & Wörn, H. (1999). Manipulating deformable linear objects—contact state transitions and transition conditions. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (vol. 3, pp. 1450–1455).

  • Remde, A., Henrich, D., & Wörn, H. (2000) Manipulating deformable linear objects—Force based detection of contact state transitions. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 1480–1486).

  • Romney, B. (1997). Atlas: An automatic assembly sequencing and fixturing system. In: Proceedings of the international conference on theory and practice of geometric modeling (pp. 397–415).

  • Romney, B., Godard, C., Goldwasser, M., & Ramkumar, G. (1995). An efficient system for geometric assembly sequence generation and evaluation. In: Proceedings of the ASME international computers in engineering conference (pp. 699–712).

  • Rosell, J. (2004). Assembly and task planning using Petri Nets: A survey. Proceedings of the I MECH E Part B journal of engineering manufacture, (vol. 218, pp. 987–994). doi:10.1243/0954405041486019.

  • Schwarzer F., Schweikard A., Joskowicz L. (2000) Efficient linear unboundedness testing: Algorithm and applications to translational assembly planning. The International Journal of Robotics Research 19: 817–834. doi:10.1177/02783640022067193

    Article  Google Scholar 

  • Schweikard A., Schwarzer F. (1998) Detecting geometric infeasibility. Artificial Intelligence 105(1-2): 139–159

    Article  Google Scholar 

  • Sebaaly, M., Fujimoto, H., & Mrad, F. (1996). Linear and non-linear assembly planning: fuzzy graph representation and GA search. In: Proceedings of the 1996 IEEE international conference on robotics and automation (pp. 1533–1538).

  • Smith S. S. F. (2004) Using multiple genetic operators to reduce premature convergence in genetic assembly planning. Computers in Industry 54(1): 34–49. doi:10.1016/j.compind.2003.08.00

    Article  Google Scholar 

  • Staffetti, E., Ros, L., & Thomas, F. (1999a). Finding infinitesimal motions of objects in assemblies using grassmann-cayley algebra. In: Proceedings of the tenth world congress on the theory of machine and mechanisms (pp. 584–591).

  • Staffetti, E., Ros, L., & Thomas, F. (1999b). A simple characterization of the infinitesimal motions separating general polyhedra in contact. In: Proceedings of the 1999 IEEE international conference on robotics and automation (ICRA) (pp. 571–577).

  • Staffetti, E., Meeussen, W., & Xiao, J. (2005). A new formalism to characterize contact states involving articulated polyhedral objects. In: Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA) (pp. 3619–3626).

  • Sundaram, S., Remmler, I., & Amato, N. (2001). Disassembly sequencing using a motion planning approach. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 1475–1480).

  • Suzuki, T., Kanehara, T., Inaba, A., & Okuma, S. (1993). On algebraic and graph structural properties of assembly petri net. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 507–514).

  • Thomas F., Torras C. (1992) Inferring feasible assemblies from spatial constraints. IEEE Transactions on Robotics and Automation 8(2): 228–239

    Article  Google Scholar 

  • Thomas, U., Barrenscheen, M., & Wahl, F. (2003). Efficient assembly sequence planning using stereographical projections of c-space obstacles. In: Proceedings of the 2003 IEEE international symposium on assembly and task planning (ISATP 2003) (pp. 96–102).

  • Tseng H. E., Li R. K. (1999) A novel means of generating assembly sequences using the connector concept. Journal of Intelligent Manufacturing 10(5): 423–435. doi:10.1023/A:1008971030395

    Article  Google Scholar 

  • Tseng H. E., Li J. D., Chang Y. H. (2004) Connector-based approach to assembly planning using a genetic algorithm. International Journal of Production Research 42: 2243–2261

    Article  Google Scholar 

  • Wang J., Liu J., Zhong Y. (2005) A novel ant colony algorithm for assembly sequence planning. The International Journal of Advanced Manufacturing Technology 25(11–12): 1137–1143. doi:10.1007/s00170-003-1952-z

    Article  Google Scholar 

  • Wang L., Keshavarzmaneh S., Feng H. Y., Buchal R. O. (2008) Assembly process planning and its future in collaborative manufacturing: a review. The International Journal of Advanced Manufacturing Technology 41(1–2): 132–144. doi:10.1007/s00170-008-1458-9

    Google Scholar 

  • Wang W. P., Tseng H. E. (2009) Complexity estimation for genetic assembly sequence planning. Journal of the Chinese Institute of Industrial Engineers 26(1): 44–52

    Article  Google Scholar 

  • Wilson, R., & Rit, J. (1990) Maintaining geometric dependencies in an assembly planner. In: Proceedings of the 1990 IEEE international conference on robotics and automation (vol. 2, pp. 890–895) Scottsdale, AZ.

  • Wilson R. H., Latombe J. C. (1994) Geometric reasoning about mechanical assembly. Artificial Intelligence 71(2): 371–396

    Article  Google Scholar 

  • Wilson R. H., Kavraki L., Lozano-Pérez T., Latombe J. C. (1995) Two-handed assembly sequencing. International Journal of Robotics Research 14(4): 335–350

    Article  Google Scholar 

  • Wolter, J. (1991). A combinatorial analysis of enumerative data structures for assembly planning. In: Proceedings of the IEEE international conference on robotics and automation (pp 611–618). citeseer.ist.psu.edu/wolter91combinatorial.html

  • Wolter, J., Chakrabarty, S., & Tsao, J. (1991). Mating constraint languages for assembly sequence planning. Technical Report 91-038, Texas A&M University.

  • Wolter, J. D. (1989). On the automatic generation of assembly plans. In: Proceedings of the 1989 IEEE international conference on robotics and automation (vol. 1, pp. 62–68) Scottsdale, AZ.

  • Xiao, J. (1993). Automatic determination of topological contacts in the presence of sensing uncertainties. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 65–70).

  • Xiao, J., & Ji, X. (2000). A divide-and-merge approach to automatic generation of contact states and planning of contact motion. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 750–756).

  • Xiao J., Ji X. (2001) Automatic generation of high-level contact state space. The International Journal of Robotics Research 20(7): 584–606

    Article  Google Scholar 

  • Xiao, J., & Liu, L. (1998). Contact states: Representation and recognizability in the presence of uncertainties. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1151–1156).

  • Yuan X. (2002) An interactive approach of assembly planning. IEEE Transactions on Systems, Man, and Cybernetics Part A Systems and Humans 32(4): 522–526

    Article  Google Scholar 

  • Zha X. F., Lim S. Y. E., Fok S. C. (1998a) Integrated intelligent design and assembly planning: A survey. The International Journal of Advanced Manufacturing Technology 14(9): 664–685. doi:10.1007/BF01192287

    Article  Google Scholar 

  • Zha X. F., Lim S. Y. E., Fok S. C. (1998b) Integrated knowledge-based petri net intelligent flexible assembly planning. Journal of Intelligent Manufacturing 9(3): 235–250. doi:10.1023/A:1008862631701

    Article  Google Scholar 

  • Zheng, Y., Pei, R., & Chen, C. (1991). Strategies for automatic assembly of deformable objects. In: Proceedings of 1991 IEEE international conference on robotics and automation (vol. 3, pp. 2598–2603). doi:10.1109/ROBOT.1991.132019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, P. Survey on assembly sequencing: a combinatorial and geometrical perspective. J Intell Manuf 24, 235–250 (2013). https://doi.org/10.1007/s10845-011-0578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-011-0578-5

Keywords

Navigation