Skip to main content
Log in

Machining precedence of 2½D interacting features in a feature-based data model

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In process planning, determining feature’s machining precedence is an essential step. The task becomes more difficult if features interact with each other, in which case the feature precedence information may suggest multiple machining sequences of the features. This paper considers interacting features in a feature-based model for process planning tasks. For each feature, precedence information is generated considering both roughing and finishing operations. A rule-based system is developed and implemented based on the information about machining precedence of the interacting features. The STEP-NC data model is used as the underlying data model. This model is object-oriented and compliant with the existing STEP standards. The output of the system is also in the STEP format through an information model developed using the EXPRESS language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P :

Final part

B :

Raw material (i.e., blank)

F i :

Feature i

\({F_{AD}^i}\) :

Feature absolute depth

\({F_r^i}\) :

Radius of feature i (when it is a hole)

\({\cap}\) :

Interaction between two features

\({\cap ^{v}}\) :

Interacting volume

\({{\it CF}_{F^{i},F^{j}} }\) :

Common face between features i and j

\({{\it C\vec{F}}_{F^{i},F^{j}}}\) :

Normal vector for \({{\it CF}_{F^{i},F^{j}} }\)

\({CV_{F^{i},F^{j}}}\) :

Common volume of features i and j

\({{\it WS}_R^i}\) :

Machining workingstep for roughing feature i

\({{\it WS}_F^i}\) :

Machining workingstep for finishing feature i

→:

Precedence

& &:

AND operand

\({F^{i}_{\it TAF}}\) :

Top approach face for feature i

\({\vec {F}^{i}_{\it TAF}}\) :

Normal vector for top approach face for feature i

SAF :

Side approach face

\({\vec {T}_{\it AD}}\) :

Tool access direction

\({\phi}\) :

Null set

σ P (Fi):

Common boundary of feature i and the final part

References

  • Alting L., Zhang H. (1989) Computer aided process planning: The state-of-the-art survey. International Journal of Production Research 27(4): 553–585. doi:10.1080/00207548908942569

    Article  Google Scholar 

  • Bhandarkar M.P., Nagi R. (2000) STEP-based feature extraction from STEP geometry for agile manufacturing. Computers in Industry 41(1): 3–24. doi:10.1016/S0166-3615(99)00040-8

    Article  Google Scholar 

  • Chen M.C. (2004) Optimizing machining economics models of turning operations using the scatter search approach. International Journal of Production Research 42(13): 2611–2625. doi:10.1080/00207540410001666251

    Article  Google Scholar 

  • Chu C.P., Gadh R. (1996) Feature-based approach for set-up minimization of process design from product design. Computer-Aided Design 28(5): 321–332. doi:10.1016/0010-4485(95)00052-6

    Article  Google Scholar 

  • Corney J., Hayes C., Sundararajan V., Wright P. (2005) The CAD/CAM interface: A 25 year retrospective. Journal of Computing and Information Science in Engineering 5(3): 188–197. doi:10.1115/1.2033009

    Article  Google Scholar 

  • Ding L., Yue Y., Ahmet K., Jackson M., Parkin R. (2005) Global optimization of a feature-based process sequence using GA and ANN techniques. International Journal of Production Research 43(15): 3247–3272. doi:10.1080/00207540500137282

    Article  Google Scholar 

  • Faraj I. (2003) Manufacturing features: Verification interaction accessibility and machinability. International Journal of Production Research 41(10): 2249–2272. doi:10.1080/0020754031000090630

    Article  Google Scholar 

  • Gadh R., Prinz F.B. (1995) Automatic determination of feature interaction in design for manufacturing analysis. Transaction of the ASME. Journal of Mechanical Design 117(1): 2–9. doi:10.1115/1.2826113

    Article  Google Scholar 

  • Gao S., Shah J.J. (1998) Automatic recognition of interacting machining features based on minimal condition subgraph. Computer Aided Design 30(9): 727–739. doi:10.1016/S0010-4485(98)00033-5

    Article  Google Scholar 

  • Gambardella L.M., Dorigo M. (2000) An ant colony system hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing 12(3): 237–255. doi:10.1287/ijoc.12.3.237.12636

    Article  Google Scholar 

  • Garey M.R., Johnson D.S. (1979) Computers and intractability: A guide to the theory of NP-completeness. Freeman and Company, San Francisco

    Google Scholar 

  • Gindy N.N., Yue Y., Zhu C.F. (1998) Automated feature validation for creating/editing feature-based component data models. International Journal of Production Research 36(9): 2479–2495. doi:10.1080/002075498192643

    Article  Google Scholar 

  • Gologlu C. (2004) A constraint-based operation sequencing for a knowledge-based process planning. Journal of Intelligent Manufacturing 15(4): 463–470. doi:10.1023/B:JIMS.0000034109.17959.90

    Article  Google Scholar 

  • González F., Rosado P. (2004) General information model for representing machining features in CAPP systems. International Journal of Production Research 42(9): 1815–1842

    Article  Google Scholar 

  • Gu Z., Zhang Y.F., Nee A.Y.C. (1997) Identification of important features for machining operations sequence generation. International Journal of Production Research 35(8): 2285–2307

    Article  Google Scholar 

  • Hwang J.S., Miller W.A. (1995) Hybrid blackboard model for feature interactions in process planning. Computers and Industrial Engineering 29(1-4): 613–617

    Article  Google Scholar 

  • Hwang J.S., Miller W.A. (1997) Using mixed-type reasoning in computer-aided process planning for feature interactions. Journal of Intelligent Manufacturing 8(4): 297–306

    Article  Google Scholar 

  • Irani S.A., Koo H.Y., Raman S. (1995) Feature-based operation generation in CAPP. International Journal of Production Research 33(1): 17–39

    Article  Google Scholar 

  • ISO 10303-1. (1994). Industrial automation and systems and integration-Product data representation and exchange. Part 1: Overview and fundamental principles.

  • ISO 13030-224. (2001). Industrial automation systems and integration; product data representation and exchange, Part 224. Application protocol: Mechanical product definition for process plans using machining features.

  • ISO 14649-1. (2003a). Data model for computerized numerical controllers, Part 1: Overview and fundamental principles.

  • ISO 10303-238. (2003b). Industrial, automation systems and integration—product data representation and exchange—part 238: Application protocols: Application interpreted model for computerized numerical controllers.

  • ISO 14649-10. (2003c). Data model for computerized numerical controllers: Part 10: General process data.

  • ISO 14649-11. (2003d). Data model for computerized numerical controllers, Part 11: Process data for milling.

  • ISO 14649-111. (2004). Data model for computerized numerical controllers: Part 111: Tools for milling machines.

  • Joo J., Park S., Cho H.B. (2001) Adaptive and dynamic, process planning using neural networks. International Journal of Production Research 39(13): 2923–2946

    Article  Google Scholar 

  • Kamhawi H.N., Leclair S.R., Chen C.L.P. (1996) Feature sequencing in the rapid design system using a genetic algorithm. Journal of Intelligent Manufacturing 7(1): 55–67

    Article  Google Scholar 

  • Kannan B., Wright P.K. (2004) Efficient algorithms for automated process planning of 2.5D machined parts considering fixturing constraints. International Journal of Computer Integrated Manufacturing 17(1): 16–28

    Article  Google Scholar 

  • Kim I.T., Suh H.W. (1998) Optimal operation grouping and sequencing technique for multistage machining systems. International Journal Production Research 36(8): 2061–2081

    Article  Google Scholar 

  • Kim Y.S., Wang E., Rho H.M. (2001) Geometry based machining precedence reasoning for feature based process planning. International Journal of Production Research 39(10): 2077–2103

    Article  Google Scholar 

  • Lee D.H., Kiritsis D., Xirouchakis P. (2001) Search heuristics for operation sequencing in process planning. International Journal Production Research 39(16): 3771–3788

    Article  Google Scholar 

  • Lee D.H., Kiritsis D., Xirouchakis P. (2004) Iterative approach to operation selection and sequencing in process planning. International Journal Production Research 42(22): 4745–4766

    Article  Google Scholar 

  • Lee K.Y., Jung M.Y. (1995) Flexible process sequencing using Petri net theory. Computers Industrial Engineering 28(2): 279–290

    Article  Google Scholar 

  • Lee S., Wysk R.A., Smith J.S. (1995) Process planning interface for a shop floor control architecture for computer-integrated manufacturing. International Journal of Production Research 33(9): 2415–2435

    Article  Google Scholar 

  • Lin A.C., Lin S.Y., Diganta D., LU W.F. (1998) Integrated approach to determining the sequence of machining operations for prismatic parts with interacting features. Journal of Materials Processing Technology 73(1–3): 234–250

    Article  Google Scholar 

  • Liu Z., Wang L. (2007) Sequencing of interacting prismatic machining features for process planning. Computers in Industry 58(4): 295–303

    Article  Google Scholar 

  • Maropoulos P.G., Baker R.P., Paramor K.Y.G. (2000) Integration of tool selection with design, Part 1: Feature creation and selection of operations and tools. Journal of Materials Processing Technology 107(1-3): 127–134

    Article  Google Scholar 

  • Miao H.K., Sridharan N., Shah J.J. (2002) CAD–CAM integration using machining features. International Journal of Computer Integrated Manufacturing 15(4): 296–318

    Article  Google Scholar 

  • Mokhtar, A., Tavakoli Bina, A., & Houshmand, M., (2007). Approaches and challenges in machining feature-based process planning. In Proceedings of DET2007: 4th International Conference on Digital Enterprise Technology, (pp. 297–305), 21 September 2007, University of Bath, Bath, UK.

  • Mokhtar, A., Xu, X., & Lazcanotegui, I. (2008). Dealing with feature interactions for prismatic parts in STEP-NC. Journal of Intelligent Manufacturing. doi:10.1007/s10845-008-0144-y

  • Newman S.T., Nassehi A. (2007) Universal manufacturing platform for CNC machining. CIRP Annals: Manufacturing Technology 56(1): 459–462

    Article  Google Scholar 

  • Nieble, B. (1965). Mechanized process selection for planning new designs. ASME Paper 737.

  • Nurre J.H., Vedati K. (1998) Cost optimization of a process plan’s tolerance assignments for manufacturing. International Journal of Modelling and Simulation 18(3): 196–199

    Google Scholar 

  • Open Cascade Technology. (2000). The applications of open cascade in CAD/CAM/CAE. http://www.opencascade.org/occ/areas/cadcamproducts/. Accessed 13 May 2008.

  • Qiao L., Wang X.Y., Wang S.C. (2000) A GA-based approach to machining operation sequencing for prismatic parts. International Journal of Production Research 38(14): 3283–3303

    Article  Google Scholar 

  • Onwubolu G.C. (2006) Performance-based optimization of multi-pass face milling operations using tribes. International Journal of Machine Tools and Manufacture 46(7–8): 717–727

    Article  Google Scholar 

  • Pal P., Tigga A.M., Kumar A. (2005) A strategy for machining interacting features using spatial reasoning. International Journal of Machine Tools and Manufacture 45(3): 269–278

    Article  Google Scholar 

  • Reddy B.S.V., Shunmugam M.S., Narendran T.T. (1999) Operation sequencing in CAPP using genetic algorithms. International Journal of Production Research 37(5): 1063–1074

    Article  Google Scholar 

  • Shah J.J. (1991) Assessment of features technology. Computer-Aided Design 23(5): 331–343

    Article  Google Scholar 

  • Shunmugam M.S., Reddy B.S.V., Narendran T.T. (2000) Selection of optimal conditions in multi-pass face-milling using a genetic Algorithm. International Journal of Machine Tools and Manufacture 40(3): 401–414

    Article  Google Scholar 

  • Singh D.K.J., Jebaraj C. (2005) Feature-based design for process planning of machining processes with optimization using genetic algorithm. International Journal of Production Research 43(18): 3855–3887

    Article  Google Scholar 

  • Sormaz D.N., Arumugam J., Rajaraman S. (2004) Integrative process plan model and representation for intelligent distributed manufacturing planning. International Journal of Production Research 42(17): 3397–3417

    Article  Google Scholar 

  • Sormaz D.N., Arumugam J. (2004) Manufacturing feature mapping and precedence relation generation for automated feature-based process planning. Transactions of the North American Manufacturing Research Institute of SME 32: 47–54

    Google Scholar 

  • Sormaz D.N., Khoshnevis B. (2000) Modeling of manufacturing feature interactions for automated process planning. Journal of Manufacturing Systems 19(1): 28–45

    Article  Google Scholar 

  • Suh S.H., Lee B.E., Chung D.H., Cheon S.U. (2003) Architecture and implementation of a shop-floor programming system for STEP-compliant CNC. Computer Aided Design 35(12): 1069–1083

    Article  Google Scholar 

  • Taiber, J. G. (1996). Optimization of process sequencing considering prismatic workpieces, Advances in Engineering Software, 25(1), 41–50.

    Google Scholar 

  • Tan W., Khoshnevis B. (2000) Integration of process planning and scheduling, a review. Journal of Intelligent Manufacturing 11(1): 51–63

    Article  Google Scholar 

  • Tolouei-Rad M. (2003) An efficient algorithm for automatic machining sequence planning in milling operations. International Journal of Production Research 41(17): 4115–4131

    Article  Google Scholar 

  • Wang L., Cai N., Feng H.Y., Liu Z. (2006a) Enriched machining feature-based reasoning for generic machining process sequencing. International Journal of Production Research 44(8): 1479–1501

    Article  Google Scholar 

  • Wang Z.G., Wong Y.S., Rahman M. (2004) Optimisation of multi-pass milling using genetic algorithm and genetic simulated annealing. International Journal of Advanced Manufacturing Technology 24(9–10): 727–732

    Article  Google Scholar 

  • Wang Z.G., Wong Y.S., Rahman M., Sun J. (2006b) Multi-objective optimization of high-speed milling with parallel genetic simulated annealing, International Journal of Advanced Manufacturing 31(3–4): 209–218

    Google Scholar 

  • Wong T.N., Chan L.C.F., Lau H.C.W. (2003) Machining process sequencing with fuzzy expert system and genetic algorithms. Engineering with Computers 19(2–3): 191–202

    Article  Google Scholar 

  • Xu, X. (2001). Feature recognition methodologies and beyond, Mechanical Engineering Transactions, 25(1), 1–19.

    Google Scholar 

  • Xu X., He Q. (2004) Striving for a total integration of CAD, CAPP, CAM and CNC. Robotics and Computer Integrated Manufacturing 20(2): 101–109

    Article  Google Scholar 

  • Xu X., Hinduja S. (1997) Determination of finishing features in 2 1/2D components. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 211(2): 125–142

    Article  Google Scholar 

  • Xu X., Newman S.T. (2006) Making CNC machine tools more open, interoperable and intelligent; a review of the technologies. Computers in Industry 57(2): 141–152

    Article  Google Scholar 

  • Xu X., Wang L., Rong Y. (2006) STEP-NC and function blocks for interoperable manufacturing. IEEE Transactions on Automation Science and Engineering 3(3): 297–307

    Article  Google Scholar 

  • Xu X., Wang H., Mao J., Newman S.T., Kramer T.R., Proctor F.M., Michaloski J.L. (2005) STEP compliant NC research: The search for intelligent CAD/CAPP/CAM/CNC integration. International Journal of Production Research 43(17): 3703–3743

    Article  Google Scholar 

  • Yeo S.H., Ngoi B.K.A., Chen H. (1998) Process sequence optimization based on a new cost–tolerance model. Journal of Intelligent Manufacturing 9(1): 29–37

    Article  Google Scholar 

  • Zhao F.L., Tso S.K., Wu P.S.Y. (2000) Cooperative agent modelling approach for process planning. Computers in Industry 41(1): 83–97

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhtar, A., Xu, X. Machining precedence of 2½D interacting features in a feature-based data model. J Intell Manuf 22, 145–161 (2011). https://doi.org/10.1007/s10845-009-0268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-009-0268-8

Keywords

Navigation