Skip to main content

Advertisement

Log in

HBBA: hybrid algorithm for buffer allocation in tandem production lines

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of buffer space allocation for a tandem production line with unreliable machines. This problem has various formulations all aiming to answer the question: how much buffer storage to allocate between the processing stations? Many authors use the knapsack-type formulation of this problem. We investigate the problem with a broader statement. The criterion depends on the average steady-state production rate of the line and the buffer equipment acquisition cost. We evaluate black-box complexity of this problem and propose a hybrid optimization algorithm (HBBA), combining the genetic and branch-and-bound approaches. HBBA is excellent in computational time. HBBA uses a Markov model aggregation technique for goal function evaluation. Nevertheless, HBBA is more general and can be used with other production rate evaluation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altiok T. (1996). Performance analysis of manufacturing systems. New York, Springer

    Google Scholar 

  • Buzacott J.A., Hanifin L.E. (1978). Models of automatic transfer lines with inventory banks: A review and comparison. AIIE Transactions 10(2): 197–207

    Google Scholar 

  • Buzacott J.A., Shanthikumar J.G. (1993). Stochastic models of manufacturing systems. New Jersey, Prentice Hall

    Google Scholar 

  • Coillard P., Proth J.M. (1984). Effet des stocks tampons dans une fabrication en ligne. Revue belge de Statistique, d’Informatique et de Recherche Opérationnelle 24(2): 3–27

    Google Scholar 

  • Dallery Y., David R., Xie X. (1989). Approximate analysis of transfer lines with unreliable machines and finite buffers. IEEE Transactions on Automatic Control, 34: 943–953

    Article  Google Scholar 

  • Dallery, Y., & Gershwin, S. B. (1992). Manufacturing flow line systems: A review of models and analytical results. Queuing systems theory and applications, 12, 3–94 (Special Issue on Queuing Model of Manufacturing Systems).

  • De Koster M.B.M. (1987). Estimation of line efficiency by aggregation. International Journal of Production Research, 25, 615–626

    Article  Google Scholar 

  • Dolgui, A. (1993). Analyse de performances d’un atelier de production discontinue: méthode et logiciel, Research Report INRIA 1949, 44 pp.

  • Dolgui A., Eremeev A., Kolokolov A., Sigaev V. (2002). A genetic algorithm for the allocation of buffer storage capacities in a production line with unreliable machines. Journal of Mathematical Modelling and Algorithms, 1(2): 89–104

    Article  Google Scholar 

  • Dolgui, A. B., & Svirin, Y. P. (1995). Models of evaluation of probabilistic productivity of automated technological complexes. Vesti Akademii Navuk Belarusi: phisika-technichnie navuki, 1, 59–67 (in Russian).

    Google Scholar 

  • Droste S., Jansen T., Wegener I. (2006). Upper and lower bounds for randomized search heuristics in black-box optimization. Theory of Computing Systems, 39(4): 525–544

    Article  Google Scholar 

  • Dubois D., Forestier J.P. (1982). Productive et en-cours moyens d’un ensemble de deux machines séparées par une zone de stockage. RAIRO Automatique 16(2): 105–132

    Google Scholar 

  • Garey M.R., Johnson D.S. (1979). Computers and intractability. A guide to the theory of NP-completeness. San Francisco, W.H. Freeman and Company

    Google Scholar 

  • Gershwin S.B. (1987). An efficient decomposition method for the approximate evaluation of tandem queues with finite storage space and blocking. Operations Research 35(2): 291–305

    Article  Google Scholar 

  • Gershwin S.B. (1994). Manufacturing systems engineering. New Jersey, Prentice Hall

    Google Scholar 

  • Gershwin S.B., Schor J.E. (2000). Efficient algorithms for buffer space allocation. Annals of Operations Research 93:117–144

    Article  Google Scholar 

  • Glasserman P., Yao D.D. (1996). Structured buffer-allocation problems. Journal of Discrete Event Dynamic Systems 6, 9–42

    Article  Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu search. Kluwer Academic Publishers.

  • Helber S. (2001). Cash-flow-oriented buffer allocation in stochastic flow lines. International Journal of Production Research 39, 3061–3083

    Article  Google Scholar 

  • Inman R.R. (1999). Empirical evaluation of exponential and independence assumptions in queueing model of manufacturing systems. Production and Operations Management 8(4): 409–432

    Article  Google Scholar 

  • Jafari M.A., Shanthikumar J.G. (1989). Determination of optimal buffer storage capacities and optimal allocation in multistage automatic transfer lines. IIE Transactions 21(2): 130–135

    Article  Google Scholar 

  • Levin, A. A., & Pasjko, N. I. (1969). Calculating the output of transfer lines. Stanki i Instrument, 8, 8–10 (in Russian).

    Google Scholar 

  • Li J. (2005). Overlapping decomposition: A system-theoretic method for modeling and analysis of complex manufacturing systems. IEEE Transactions on Automation Science and Engineering 2(1): 40–53

    Article  Google Scholar 

  • Motwani, R., & Raghavan, P. (1995). Randomized algorithms. Cambridge University Press.

  • Papadopoulos H. T., Heavey C. (1996). Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines. European Journal of Operational Research 92:1–27

    Article  Google Scholar 

  • Patchong A., Lemoine T., Kern G. (2003). Improving car body production at PSA Peugeot Citroen. Interfaces 33(1): 36–49

    Article  Google Scholar 

  • Reeves C.R. (1993). Modern heuristic techniques for combinatorial problems. New York, NY, John Wiley & Sons

    Google Scholar 

  • Shi L., Men S. (2003). Optimal buffer allocation in production lines. IIE Transactions 35: 1–10

    Article  Google Scholar 

  • Sörensen K., Janssens G. K. (2004). A Petri net model of a continuous flow transfer line with unreliable machines. European Journal of Operational Research 152: 248–262

    Article  Google Scholar 

  • Spinellis D., Papadopoulos C. (2000). Stochastic algorithms for buffer allocation in reliable production lines. Mathematical Problems in Engineering 5:441–458

    Article  Google Scholar 

  • Tempelmeier H. (2003). Practical considerations in the optimization of flow production systems. International Journal of Production Research 41(1): 149–170

    Article  Google Scholar 

  • Terracol, C., & David, R. (1987). An aggregation method for performance valuation of transfer lines with unreliable machines and finite buffers. Proceedings of the IEEE International Conference on Robotics and Automation, 1333–1338.

  • Vouros G.A., Papadopoulos H. T. (1998). Buffer allocation in unreliable production lines using a knowledge based system. Computers and Operations Research 25(12): 1055–1067

    Article  Google Scholar 

  • YamashitaH., Altiok T. (1998). Buffer capacity allocation for a desired throughput in production lines. IIE Transactions, 30, 883–891

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Dolgui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgui, A., Eremeev, A.V. & Sigaev, V.S. HBBA: hybrid algorithm for buffer allocation in tandem production lines. J Intell Manuf 18, 411–420 (2007). https://doi.org/10.1007/s10845-007-0030-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-007-0030-z

Keywords

Navigation