Skip to main content
Log in

Butterfly bait traps versus zigzag walks: What is the better way to monitor common and threatened butterflies in non-tropical regions?

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Trapping live butterflies using bait traps is a traditional monitoring method used in tropical regions. We compared the utility of bait traps with zigzag walks in temperate Central Europe where butterfly bait traps have not been systematically tested yet. We focused on butterfly communities in steppes, forest steppes and open woodlands. We carried out the research in seven localities during 2–4 consecutive days in summer 2013. We observed far fewer specimens using zigzag walks (538) than bait traps (2115), but more species (34 vs. 23), genera (27 vs. 18), as well as families (8 vs. 5). However, overall species composition was not influenced by monitoring method but only by locality. For 8 of 37 detected diurnal species bait traps were more efficient than zigzag walks. Most of the trapped species and individuals were sampled from the Nymphalidae and were attracted to both types of bait in various ratios. Pieridae and Papilionidae were not attracted to the traps. Also, some of both common and rare species of the Nymphalidae were detected only using zigzag walks. We recorded eight species from the Czech Red list of threatened species as well as one priority species of European Union interest by combining both methods. We are convinced that using a combination of the standard monitoring procedure and butterfly bait traps would lead to an improvement in species detectability and provide a more accurate estimation of actual species abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addai G, Baidoo PK (2013) The effects of forest destruction on the abundance, species richness and diversity of butterflies in the Bosomkese Forest Reserve, Brong Ahafo Region, Ghana. J Appl Biosci 64:4763–4772

    Article  Google Scholar 

  • Ambrus R (2013) New findings of the longhorn beetle Purpuricenus kaehleri kaehleri (Coleoptera: Cerambycidae) in the Czech Republic. Klapalekiana 49:185–186

    Google Scholar 

  • Austin GT, Riley TJ (1995) Portable bait traps for the study of butterflies. Trop Lepid 6:5–9

    Google Scholar 

  • Barlow J, Overal WL, Araujo IS, Gardner TA, Peres CA (2007) The value of primary, secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. J Appl Ecol 44:1001–1012. doi:10.1111/j.1365-2664.2007.01347.x

    Article  Google Scholar 

  • Barlow J, Araujo IS, Overal WL, Gardner TA, Mendes FS, Lake IR, Peres CA (2008) Diversity and composition of fruit-feeding butterflies in tropical Eucalyptus plantations. Biodivers Conserv 17:1089–1104. doi:10.1007/s10531-007-9240-0

    Article  Google Scholar 

  • Beck J, Muhlenberg E, Fiedler K (1999) Mud-puddling behavior in tropical butterfies: in search of proteins or minerals? Oecologia 119:140–148. doi:10.1007/s004420050770

    Article  Google Scholar 

  • Benes J, Konvicka M, Dvorak J, Fric Z, Havelda Z, Pavlicko A, Vrabec V, Weidenhoffer Z (eds) (2002) Butterflies of the Czech Republic: distribution and conservation I, II. SOM, Prague

    Google Scholar 

  • Benes J, Kepka P, Konvicka M (2003) Limestone quarries as refuges for European xerophilous butterflies. Conserv Biol 17:1058–1069. doi:10.1046/j.1523-1739.2003.02092.x

    Article  Google Scholar 

  • Bonebrake TC, Sorto R (2009) Butterfly (Papilionoidea and Hesperioidea) rapid assessment of a coastal countryside in El Slavador. Trop Conserv Sci 2:34–51

    Google Scholar 

  • Bossart JL, Opuni-Frimpong E (2009) Distance from edge determines fruit-feeding butterfly community diversity in afrotropical forest fragments. Environ Entomol 38:43–52. doi:10.1603/022.038.0107

    Article  CAS  PubMed  Google Scholar 

  • Checa MF, Rodriguez J, Willmott KR, Liger B (2014) Microclimate variability significantly affects the composition, abundance and phenology of butterfly communities in a highly threatened neotropical dry forest. Fla Entomol 97:1–13. doi:10.1653/024.097.0101

    Article  Google Scholar 

  • Clarin BM, Bitzilekis E, Siemers BM, Goerlitz HR (2014) Personal messages reduce vandalism and theft of unattended scientific equipment. Methods Ecol Evol 5:125–131. doi:10.1111/2041-210X.12132

    Article  PubMed Central  PubMed  Google Scholar 

  • Cook PA, Wedell N (1996) Ejaculate dynamics in butterflies: a strategy for maximising fertilization success. Proc R Soc Lond B 263:1047–1051. doi:10.1098/rspb.1996.0154

    Article  Google Scholar 

  • Daily GC, Ehrlich PR (1995) Preservation of biodiversity in small rainforest patches: rapid evaluations using butterfly trapping. Biodivers Conserv 4:35–55. doi:10.1007/BF00115313

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, Isaac NJB, Roy DB, Hardy PB, Fox R, Asher J (2006) The effects of visual apparency on bias in butterfly recording and monitoring. Biol Cons 128:486–492. doi:10.1016/j.biocon.2005.10.015

    Article  Google Scholar 

  • DeVries P, Murray D, Russel L (1997) Species diversity in vertical, horizontal, and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rainforest. Biol J Linn Soc 62:343–364. doi:10.1006/bijl.1997.0155

    Article  Google Scholar 

  • Dumbrell AJ, Hill JK (2005) Impacts of selective logging on canopy and ground assemblages of tropical forest butterflies: implications for sampling. Biol Conserv 125:123–131. doi:10.1016/j.biocon.2005.02.016

    Article  Google Scholar 

  • Farkac J, Kral D, Skorpik M (eds) (2005) Red list of threatened species in the Czech Republic, Invertebrates. AOPK CR, Praha

    Google Scholar 

  • Hamer KC, Hill JK, Benedick S, Mustafa N, Sherratt TN, Maryati M, Chey VK (2003) Ecology of butterflies in natural and selectively logged forests of northern Borneo: the importance of habitat heterogeneity. J Appl Ecol 40:150–162. doi:10.1046/j.1365-2664.2003.00783.x

    Article  Google Scholar 

  • Hantson S, Baz A (2011) Seasonal change in nectar preference for a mediterranean butterfly community. J Lepid Soc 67:134–142

    Google Scholar 

  • Harker RJ, Shreeve TG (2008) How accurate are single site transect data for monitoring butterfly trends? Spatial and temporal issues identified in monitoring Lasiommata megera. J Insect Conserv 12:125–133. doi:10.1007/s10841-007-9068-7

    Article  Google Scholar 

  • Holloway JD, Barlow HS, Loong HK, Khen CV (2013) Sweet or savoury? Adult feeding preferences of Lepidoptera attracted to banana and prawn baits in the oriental tropics. Raffles B Zool (Supplement) 29:71–90

    Google Scholar 

  • Houlihan PR, Harrison ME, Cheyne SM (2013) Impacts of forest gaps on butterfly diversity in a Bornean peat-swamp forest. J Asia Pac Entomol 16:67–73. doi:10.1016/j.aspen.2012.10.003

    Article  Google Scholar 

  • Hughes BH, Gretchen CD, Ehrlich PD (1998) Use of fruit bait traps for monitoring of butterflies (Lepidoptera: Nymphalidae). Rev Biol Trop 46:697–704

    Google Scholar 

  • Isaac NJB, Cruickshanks KL, Weddle AM, Rowcliffe JM, Brereton TM, Dennis RLH, Shuker DM, Thomas CD (2011) Distance sampling and the challenge of monitoring butterfly populations. Methods Ecol Evol 2:585–594. doi:10.1111/j.2041-210X.2011.00109.x

    Article  Google Scholar 

  • Kadlec T, Vrba P, Kepka P, Schmitt T, Konvicka M (2010) Tracking the decline of the once-common butterfly: delayed oviposition, demography and population genetics in the hermit Chazara briseis. Anim Conserv 13:172–183. doi:10.1111/j.1469-1795.2009.00318.x

    Article  Google Scholar 

  • Kadlec T, Tropek R, Konvicka M (2012) Timed surveys and transect walks as comparable methods for monitoring butterflies in small plots. J Insect Conserv 16:275–280. doi:10.1007/s10841-011-9414-7

    Article  Google Scholar 

  • Kery M, Plattner M (2007) Species richness estimation and determinants of species detectability in butterfly monitoring programmes. Ecol Entomol 32:53–61. doi:10.1111/j.1365-2311.2006.00841.x

    Article  Google Scholar 

  • Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingschutz, Halle

    Google Scholar 

  • Laaksonen J, Laaksonen T, Itamies J, Rytkonen S, Valimaki P (2006) A new efficient bait-trap model for Lepidoptera surveys—the “Oulu” model. Entomol Fenn 17:153–160

    Google Scholar 

  • Landolt PJ, Hammond PC (2001) Species composition of moths captured in traps baited with acetic acid and 3-methyl-1-butanol, in Yakima county, Washington. J Lepid Soc 55:53–58

    Google Scholar 

  • Lastuvka A, Liska J (2011) Annotated checklist of moths and butterflies of the Czech Republic (Insecta: Lepidoptera). Biocont Laboratory, Brno

    Google Scholar 

  • Molleman F, Van Alpen ME, Brakefield PM, Zwaan BJ (2005) Preferences of food quality of fruit-feeding butterflies in Kibale forest, Uganda. Biotropica 37:657–663. doi:10.1111/j.1744-7429.2005.00083.x

    Article  Google Scholar 

  • Nowicki P, Settele J, Henry PY, Woyciechowskia M (2008) Butterfly monitoring methods: the ideal and the real world. Isr J Ecol Evol 54:69–88. doi:10.1560/IJEE.54.1.69

    Article  Google Scholar 

  • Pardonnet S, Beck H, Milberg P, Bergman KO (2013) Effect of tree-fall gaps on fruit-feeding nymphalid butterfly assemblages in a peruvian rain forest. Biotropica 45:612–619. doi:10.1111/btp.12053

    Article  Google Scholar 

  • Pellet J, Bried JT, Parietti D, Gander A, Heer PO, Cherix D, Arlettaz R (2012) Monitoring butterfly abundance: beyond Pollard walks. PLoS One 7:e41396. doi:10.1371/journal.pone.0041396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Platt AP (1969) A lightweight collapsible bait trap for Lepidoptera. J Lepid Soc 23:97–101

    Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. The British butterfly monitoring scheme. Institute of Terrestrial Ecology and Joint Nature Conservation Committee. Chapman and Hall, London

    Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Restrepo LR, Halffter G (2013) Butterfly diversity in a regional urbanization mosaic in two Mexican cities. Landsc Urban Plan 115:39–48. doi:10.1016/j.landurbplan.2013.03.005

    Article  Google Scholar 

  • Ribeiro DB, Batista R, Prado PI, Brown KS Jr, Freitas AVL (2012) The importance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodivers Conserv 21:811–827. doi:10.1007/s10531-011-0222-x

    Article  Google Scholar 

  • Rydon A (1964) Notes on the use of butterfly traps in East Africa. J Lepid Soc 18:51–58

    Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

  • Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881. doi:10.1126/science.1095046

    Article  CAS  PubMed  Google Scholar 

  • Uehara-Prado M, Freitas AVL (2009) The effect of rainforest fragmentation on species diversity and mimicry ring composition of ithomiine butterflies. Insect Conserv Divers 2:23–28. doi:10.1111/j.1752-4598.2008.00025.x

    Article  Google Scholar 

  • Van Swaay C, Warren M, Lois G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209. doi:10.1007/s10841-006-6293-4

    Article  Google Scholar 

  • Van Swaay CAM, Nowicki P, Settele J, Van Strien AJ (2008) Butterfly monitoring in Europe: methods, applications and perspectives. Biodivers Conserv 17:3455–3469. doi:10.1007/s10531-008-9491-4

    Article  Google Scholar 

  • Van Swaay C, Cuttelod A, Collins S, Maes D, Lopez Munguira M, Sasic M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhof I (2010) European red list of butterflies. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Villarreal H, Alvarez M, Cordoba S, Escobar F, Fagua G, Gast F, Mendoza H, Ospina M, Umana AM (2004) Manual de medodos para el desarrollo de inventarios de biodiversidad. Programa de Inventarios de Biodiversidad. Instituto de Investigacion de Recursos Biologicos Alexander von Humboldt, Bogota

    Google Scholar 

  • Webster RJ, Callahan A, Godin JGJ, Sherratt TN (2009) Behaviourally mediated crypsis in two nocturnal moths with contrasting appearance. Philos Trans R Soc Lond B Biol Sci 364:503–510. doi:10.1098/rstb.2008.0215

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

A. Ellschloger, T. Junek, T. Kunca, K. Simunkova, M. Solsky, P. Sousek, P. Vlkova and J. Vojar helped us with the field work. We thank Administration of the Blanik PLA, Bohemian Karst PLA, Bohemian Middle Mountains PLA and Palava PLA for the opportunity to research in protected areas. Two anonymous reviewers gave us valuable and constructive comments on earlier version of the manuscript. Funding was provided by the Internal grant agency of Faculty of Environmental Sciences, Czech University of Life Sciences Prague (Reg. No. 20144236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lada Jakubikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakubikova, L., Kadlec, T. Butterfly bait traps versus zigzag walks: What is the better way to monitor common and threatened butterflies in non-tropical regions?. J Insect Conserv 19, 911–919 (2015). https://doi.org/10.1007/s10841-015-9809-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-015-9809-y

Keywords

Navigation