Skip to main content

Advertisement

Log in

Coastal heathland succession influences butterfly community composition and threatens endangered butterfly species

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Succession has a strong influence on species diversity and composition of semi-natural open terrestrial ecosystems. While several studies examined the effects of succession on butterflies in grassland and forest ecosystems, the response of heathland butterflies to succession had not been investigated so far. To address this issue we sampled butterfly abundance and environmental parameters on the Baltic island of Hiddensee (NE Germany) along a gradient of coastal heathland succession from grey dunes to birch forest. Our results provide evidence that succession of coastal heathland has a strong influence on butterfly diversity, abundance, and species composition. Thereby grass and tree encroachment present the main threats for heathland butterflies. Diversity and abundance of butterflies were highest in shrub-encroached heath directly followed by early stages of coastal heathland succession (dwarf-shrub heath, grey dune). Both observed threatened species (Hipparchia semele, Plebeius argus) were negatively affected by succession: abundance decreased with increasing vegetation density (both species) and grass cover (P. argus); consequently, the two later successional stages (shrub, birch forest) were not occupied. Our findings highlight the importance of the preservation of early stages of coastal heathland succession for endangered butterfly species. For coastal heathland management we therefore suggest to maintain early successional stages by sheep grazing, mowing or, in case of high nutrient contents, intensive techniques such as sod-cutting or choppering. To a lower extend shrub-encroached sites should also be present, which might be beneficial for overall species richness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford

    Google Scholar 

  • Balmer O, Erhardt A (2000) Consequences of succession on extensively grazed grasslands for central European butterfly communities: rethinking conservation practices. Conserv Biol 14:746–757

    Article  Google Scholar 

  • Baur B, Cremene C, Groza G, Rakosy L, Schileyko AA, Baur A, Stoll P, Erhardt A (2006) Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biol Conserv 132:261–273

    Article  Google Scholar 

  • Borchard F, Schulte AM, Fartmann T (2013) Rapid response of Orthoptera to restoration of montane heathland. Biodivers Conserv 22:687–700

    Article  Google Scholar 

  • Bräu M, Bolz R, Kolbeck H, Nummer A, Voith J, Wolf W (2013) Tagfalter in Bayern. Ulmer, Stuttgart

    Google Scholar 

  • Britton AJ, Pakeman RJ, Carey PD, Marrs RH (2001) Impacts of climate, management and nitrogen deposition on the dynamics of lowland heathland. J Veg Sci 12:797–806

    Article  Google Scholar 

  • Buchholz S, Hannig K, Schirmel J (2013) Losing uniqueness—shifts in carabid species composition during dry grassland and heathland succession. Anim Conserv 16:661–670

    Article  Google Scholar 

  • Dennis RLH (2010) A resource-based habitat view for conservation. Butterflies in the British landscape. Wiley, Chichester

    Book  Google Scholar 

  • Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426

    Article  Google Scholar 

  • Ebert G, Rennwald E (eds) (1991a) Die Schmetterlinge Baden-Württembergs. Vol 1, Tagfalter I. Eugen Ulmer, Stuttgart

  • Ebert G, Rennwald E (eds) (1991b) Die Schmetterlinge Baden-Württembergs. Vol 2, Tagfalter II. Eugen Ulmer, Stuttgart

  • EC (European Commission) (2007) Interpretation manual of European Union habitats—EUR27. European Commission, DG Environment, Brussels

  • Fartmann T, Krämer B, Stelzner F, Poniatowski D (2012) Orthoptera as ecological indicators for succession in steppe grassland. Ecol Indic 20:337–344

    Article  Google Scholar 

  • Fartmann T, Müller C, Poniatowski D (2013) Effects of coppicing on butterfly communities of woodlands. Biol Conserv 159:396–404

    Article  Google Scholar 

  • García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve T, Konvička M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42

    Google Scholar 

  • Gimingham CH (1992) The lowland heathland management handbook. English Nature Science, Peterborough

    Google Scholar 

  • Greatorex-Davies JN, Sparks TH, Hall ML, Marrs RH (1993) The influence of shade on butterflies in rides of coniferised lowland woods in southern England and implications for conservation management. Biol Conserv 63:31–41

    Article  Google Scholar 

  • Heil GW, Diemont WH (1983) Raised nutrient levels change heathland into grassland. Vegetatio 53:113–120

    Article  Google Scholar 

  • Karsholt O, Razowski W (1996) The Lepidoptera of Europe: a distributional checklist. Apollo Books, Stentrup

    Google Scholar 

  • Krämer B, Poniatowski D, Fartmann T (2012) Effects of landscape and habitat quality on butterfly communities in pre-alpine calcareous grasslands. Biol Conserv 152:253–261

    Google Scholar 

  • Kruess A, Tscharntke T (2002) Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conserv Biol 16:1570–1580

    Article  Google Scholar 

  • Leopold P (2007) Larvalökologie der Rostbinde Hipparchia semele (Linnaeus, 1758; Lepidoptera, Satyrinae) in Nordrhein-Westfalen. Die Notwendigkeit raumzeitlicher Störungsprozesse für den Arterhalt. Abh Westf Mus Naturkde 69:1–146

    Google Scholar 

  • Littlewood NA, Pakeman RA, Woodin SJ (2006) The response of plant and insect assemblages to the loss of Calluna vulgaris from upland vegetation. Biol Conserv 128:335–345

    Article  Google Scholar 

  • Maes D, Bonte D (2006) Using distribution patterns of five threatened invertebrates in a highly fragmented dune landscape to develop a multispecies conservation approach. Biol Conserv 133:490–499

    Article  Google Scholar 

  • Maes D, Ghesquiere A, Logie M, Bonte D (2006) Habitat use and mobility of two threatened coastal dune insects: implications for conservation. J Insect Conserv 10:105–115

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Mantilla-Contreras J, Schirmel J, Zerbe S (2012) Influence of soil and microclimate on species composition and grass encroachment in heath succession. J Plant Ecol 5:249–259

    Article  Google Scholar 

  • Marini L, Fontana P, Battisti A, Gaston KJ (2009) Response of orthopteran diversity to abandonment of semi-natural meadows. Agric Ecosyst Environ 132:232–236

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Mecklenburg-Vorpommern U (ed) (2003) Die Naturschutzgebiete in Mecklenburg-Vorpommern. Demmler, Schwerin

  • Munguira ML, García-Barros E, Martín Cano J (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve T, Konvička M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54

    Google Scholar 

  • Öckinger E, Eriksson AK, Smith HG (2006) Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biol Conserv 133:291–300

    Google Scholar 

  • Pollard E (1977) Method for assessing changes in abundance of butterflies. Biol Conserv 12:15–134

    Article  Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman and Hall, London

    Google Scholar 

  • Provoost S, Jones MLM, Edmondson SE (2009) Changes in landscape and vegetation of coastal dunes in northwest Europe: a review. J Coast Conserv 15:207–226

    Article  Google Scholar 

  • Ravenscroft NOM (1990) The ecology and conservation of the silver-studded blue butterfly Plebejus argus L. on the sandlings of East Anglia, England. Biol Conserv 53:21–36

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reinhardt R, Bolz R (2011) Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands. Natursch Biol Vielfalt 70(3):167–194

    Google Scholar 

  • Remke E, Brouwer E, Kooijman A, Blindow I, Esselink H, Roelofs JGM (2009a) Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea. Environ Pollut 157:792–800

    Article  CAS  PubMed  Google Scholar 

  • Remke E, Brouwer E, Kooijman A, Blindow I, Roelofs JGM (2009b) Low atmospheric nitrogen loads lead to grass encroachment in coastal dunes, but only on acid soils. Ecosystems 12:1173–1188

    Article  CAS  Google Scholar 

  • Roem WJ, Klees H, Berendse F (2002) Effects of nutrient addition and acidification on plant species diversity and seed germination in heathland. J Appl Ecol 39:937–948

    Article  CAS  Google Scholar 

  • Rose RJ, Webb NR, Clarke RT, Traynor CH (2000) Changes on the heathlands in Dorset, England, between 1987 and 1996. Biol Conserv 93:117–125

    Article  Google Scholar 

  • Salz A, Fartmann T (2009) Coastal dunes as important strongholds for the survival of the rare Niobe fritillary (Argynnis niobe). J Insect Conserv 13:643–654

    Article  Google Scholar 

  • Schirmel J, Buchholz S (2011) Response of carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) to coastal heathland succession. Biodivers Conserv 20:1469–1482

    Article  Google Scholar 

  • Schirmel J, Mantilla-Contreras J, Blindow I, Fartmann T (2011) Impacts of succession and grass encroachment on heathland Orthoptera. J Insect Conserv 15:633–642

    Article  Google Scholar 

  • Settele J, Steiner R, Reinhardt R, Feldmann R (2005) Schmetterlinge: die Tagfalter Deutschlands. Ulmer, Stuttgart

    Google Scholar 

  • Skórka P, Settele J, Woyciechowski M (2007) Effects of management cessation on grassland butterflies in southern Poland. Agric Ecosyst Environ 121:319–324

    Article  Google Scholar 

  • Sparks TH, Greatorex-Davies JN, Mountford JO, Hall ML, Marrs RH (1996) The effects of shade on the plant communities of rides in plantation woodland and implications for butterfly conservation. For Ecol Manag 80:197–207

    Article  Google Scholar 

  • Sundermeier A (1998) Methoden zur Analyse der Vegetationsstruktur. In: Traxler A (ed) Handbuch des vegetationsökologischen Monitorings. Teil A: Methoden. Umweltbundesamt, Wien, pp 123–158

    Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Thomas CD (1985) The status and conservation of the butterfly Plebejus argus L. (Lepidoptera: Lycaenidae) in North West Britain. Biol Conserv 33:29–51

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • WallisDeVries MF, Raemakers I (2001) Does extensive grazing benefit butterflies in coastal dunes? Restor Ecol 9:179–188

    Article  Google Scholar 

  • WallisDeVries MF, Van Swaay C (2006) Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Glob Chang Biol 12:1620–1626

    Article  Google Scholar 

  • WallisDeVries MF, Van Swaay CAM, Plate CL (2012) Changes in nectar supply: a possible cause of widespread butterfly decline. Curr Zool 58:384–391

    Google Scholar 

  • Warren MS (1985) The influence of shade on butterfly numbers in woodland rides, with special reference to the wood white Leptidea sinapis. Biol Conserv 33:147–164

    Article  Google Scholar 

  • Webb NR (1998) The traditional management of European heathlands. J Appl Ecol 35:987–990

    Article  Google Scholar 

  • Wheeler B (2010) lmPerm: permutation tests for linear models. R package version 1.1-2. http://CRAN.R-project.org/package=lmPerm

  • Wünsch Y, Schirmel J, Fartmann T (2012) Conservation management of coastal dunes for Orthoptera has to consider oviposition and nymphal preferences. J Insect Conserv 16:501–510

    Article  Google Scholar 

  • Zuur AF, Ieno IN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, Berlin

    Book  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jasmin Mantilla-Contreras for help with the field work and the national park ‘Vorpommersche Boddenlandschaft’ for the permission to conduct the study in the protected area. The study was partly funded by the ‘Bauer-Hollmann-Stiftung’. Moreover, we a grateful to two anonymous referees for valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Schirmel.

Appendix

Appendix

See Table 4.

Table 4 List of observed butterfly species in five successional stages of a coastal heathland on the Baltic island of Hiddensee, NE Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schirmel, J., Fartmann, T. Coastal heathland succession influences butterfly community composition and threatens endangered butterfly species. J Insect Conserv 18, 111–120 (2014). https://doi.org/10.1007/s10841-014-9619-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9619-7

Keywords

Navigation