Skip to main content

Advertisement

Log in

Butterfly community structure and landscape composition in agricultural landscapes of the central United States

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Agricultural landscapes worldwide are under increased pressure to provide food, feed, fiber, and fuel for a growing human population. These demands are leading to changes in agricultural landscapes and subsequent declines in biodiversity. We used citizen science data from the North American Butterfly Association and remotely-sensed land cover data from the US Department of Agriculture to study relationships between agricultural landscape composition and butterfly community structure in the Midwestern US. Landscape-level butterfly species richness (based on rarefaction estimates) was highest in agricultural landscapes with relatively low amounts of cropland, relatively high amounts of woodland, and intermediate amounts of grassland and wetland. Rarefied richness generally declined with the dominance of any of these land cover types. Unlike other land cover types, urban development had a consistent negative effect on rarefied richness. Butterfly community structure (based on relative abundance) was also significantly related to the amount of cropland, woodland, grassland, and wetland in the landscape. The rarest butterfly species were associated with woodland-, grassland-, and wetland-dominated landscapes, likely due to their association with plant species occurring in savannahs, prairies, and marshes, respectively. Assuming that variation across space reflects changes over time, our results support conclusions from previous studies that removal of natural and seminatural habitats alters butterfly community structure and decreases species diversity in agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Attwood SJ, Maron M, House APN, Zammit C (2008) Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob Ecol Biogeogr 17:585–599

    Article  Google Scholar 

  • Bergerot B, Fontaine B, Julliard R, Baguette M (2010) Landscape variables impact the structure and composition of butterfly assemblages along an urbanization gradient. Landsc Ecol 26:83–94

    Article  Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727

    Article  PubMed  CAS  Google Scholar 

  • Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New York

    Google Scholar 

  • Blair RB, Launer AE (1997) Butterfly diversity and human land use: species assemblages along an urban gradient. Biol Conserv 80:113–125

    Article  Google Scholar 

  • Bock CE, Root TL (1981) The Christmas bird count and avian ecology. Stud Avian Biol 6:17–23

    Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

    Book  Google Scholar 

  • Clark PJ, Reed JM, Chew FS (2007) Effects of urbanization on butterfly species richness, guild structure, and rarity. Urban Ecosyst 10:321–337

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, Plymouth

  • Di Mauro D, Dietz T, Rockwood L (2007) Determining the effect of urbanization on generalist butterfly species diversity in butterfly gardens. Urban Ecosyst 10:427–439

    Article  Google Scholar 

  • Donner SD, Kucharik CJ (2008) Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc Nat Acad Sci USA 105:4513–4518

    Article  PubMed  CAS  Google Scholar 

  • Dover JW, Spencer S, Collins S, Hadjigeorgiou I, Rescia A (2011) Grassland butterflies and low intensity farming in Europe. J Insect Conserv 15:129–137

    Article  Google Scholar 

  • Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138

    Article  Google Scholar 

  • ESRI (2008) ArcGIS, version 9.3. ESRI, Redlands

    Google Scholar 

  • Fargione JE, Cooper TR, Flaspohler DJ, Hill J, Lehman C, Tilman D, McCoy T, McLeod S, Nelson EJ, Oberhauser KS (2009) Bioenergy and wildlife: threats and opportunities for grassland conservation. Bioscience 59:767–777

    Article  Google Scholar 

  • Fletcher RJ Jr, Robertson BA, Evans J, Doran PJ, Alavalapati JR, Schemske DW (2010) Biodiversity conservation in the era of biofuels: risks and opportunities. Front Ecol Environ 9:161–168

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Fukami T, Wardle DA (2005) Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proc R Soc B 272:2105–2115

    Article  PubMed  Google Scholar 

  • Gardiner M, Tuell J, Isaacs R, Gibbs J, Ascher J, Landis D (2010) Implications of three biofuel crops for beneficial arthropods in agricultural landscapes. BioEnergy Res 3:6–19

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Hendrickx F, Maelfait JP, van Wingerden WKRE, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekotter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes? J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Hertel TW (2011) The global supply and demand for agricultural land in 2050: a perfect storm in the making? Am J Agric Econ 93:259–275

    Google Scholar 

  • Kadoya T, Washitani I (2011) The Satoyama index: a biodiversity indicator for agricultural landscapes. Agric Ecosyst Environ 140:20–26

    Article  Google Scholar 

  • Kitahara M, Sei K (2001) A comparison of the diversity and structure of butterfly communities in semi-natural and human-modified grassland habitats at the foot of Mt. Fuji, central Japan. Biodivers Conserv 10:331–351

    Article  Google Scholar 

  • Kocher SD, Williams EH (2000) The diversity and abundance of North American butterflies vary with habitat disturbance and geography. J Biogeogr 27:785–794

    Article  Google Scholar 

  • Kovács-Hostyánszki A, Korösi Á, Orci KM, Batáry P, Báldi A (2011) Set-aside promotes insect and plant diversity in a Central European country. Agric Ecosyst Environ 141:296–301

    Article  Google Scholar 

  • Kucharik CJ (2003) Evaluation of a process-based agro-ecosystem model (agro-IBIS) across the US corn belt: simulations of the interannual variability in maize yield. Earth Interact 7:1–33

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Link WA, Sauer JR (1999) Controlling for varying effort in count surveys: an analysis of Christmas bird count data. J Agric Biol Environ Stat 4:116–125

    Article  Google Scholar 

  • MacNally R, Walsh CJ (2004) Hierarchical partitioning public-domain software. Biodivers Conserv 13:659–660

    Article  Google Scholar 

  • Marini L, Fontana P, Battisti A, Gaston K (2009) Agricultural management, vegetation traits and landscape drive orthopteran and butterfly diversity in a grassland-forest mosaic: a multi-scale approach. Insect Conserv Divers 2:213–220

    Article  Google Scholar 

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • McGarigal K, Kushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst

    Google Scholar 

  • Meehan TD, Hurlbert AH, Gratton C (2010) Bird communities in future bioenergy landscapes of the Upper Midwest. Proc Nat Acad Sci USA 107:18533–18538

    Article  PubMed  CAS  Google Scholar 

  • NABA (2011) North American Butterfly Association home page. http://www.naba.org. Last accessed on 9 Apr 2012

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RG, Simpson GL, Solymus P, Stevens MH (2011) Vegan: community ecology package. R package version 2.0-3

  • Opler PA, Lotts K, Naberhaus T (2011) Butterflies and moths of North America. http://www.butterfliesandmoths.org/. Last accessed on 9 Apr 2012

  • Pe’er G, van Maanen C, Turbé A, Matsinos YG, Kark S (2011) Butterfly diversity at the ecotone between agricultural and semi-natural habitats across a climatic gradient. Divers Distrib 17:1186–1197

    Article  Google Scholar 

  • Peterson DW, Reich PB (2001) Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecol Appl 11:914–927

    Article  Google Scholar 

  • Rempel RS, Kaukinen D, Carr AP (2012) Patch analyst and patch grid. Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research, Thunder Bay. http://www.cnfer.on.ca/SEP/patchanalyst/. Last accessed on 9 Apr 2012

  • Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldemberg J, Mladenoff DJ, Ojima D, Palmer MW, Sharpley A, Wallace L, Weathers KC, Wiens JA, Wilhelm WW (2008) Sustainable biofuels redux. Science 322:49–50

    Article  PubMed  CAS  Google Scholar 

  • Robertson BA, Doran PJ, Loomis LR, Robertson JR, Schemske DW (2011) Perennial biomass feedstocks enhance avian diversity. GCB Bioenergy 3:235–246

    Article  Google Scholar 

  • Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176

    Article  Google Scholar 

  • Rundlof M, Smith HG (2006) The effect of organic farming on butterfly diversity depends on landscape context. J Appl Ecol 43:1121–1127

    Article  Google Scholar 

  • Samson F, Knopf F (1994) Prairie conservation in North America. Bioscience 44:418–421

    Article  Google Scholar 

  • Smith DD (1981) Iowa prairie: an endangered ecosystem. Proc Iowa Acad Sci 88:7–10

    Google Scholar 

  • Swengel AB (1990) Monitoring butterfly populations using the fourth of July butterfly count. Am Midl Nat 124:395–406

    Article  Google Scholar 

  • Swengel AB (1998) Comparisons of butterfly richness and abundance measures in prairie and barrens. Biodivers Conserv 7:1639–1659

    Article  Google Scholar 

  • R Core Development Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org/. Last accessed on 9 Apr 2012

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600

    Article  PubMed  CAS  Google Scholar 

  • Tscharntke T, Klein A, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • USDA ERS (2010a) Feed grains baseline, 2010 to 2019. United States Department of Agriculture Economic Research Service, Washington DC. http://www.ers.usda.gov/briefing/corn/2010baseline.htm. Last accessed 9 Apr 2012

  • USDA ERS (2010b) Soybean baseline, 2010 to 2019. United States Department of Agriculture Economic Research Service, Washington DC. http://www.ers.usda.gov/briefing/soybeansoilcrops/2010_19baseline.htm. Last accessed 9 Apr 2012

  • USDA NASS (2010) Cropland data layer. United States Department of Agriculture National Agricultural Statistics Service, Washington DC. http://nassgeodata.gmu.edu/CropScape/. Last accessed 9 Apr 2012

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  • Warner RE (1994) Agricultural land use and grassland habitat in Illinois: future shock for Midwestern birds? Conserv Biol 8:147–156

    Article  Google Scholar 

  • WDNR (2011) Wisconsin natural heritage working list. Wisconsin Department of Natural Resources, Madison. http://dnr.wi.gov/org/land/er/biodiversity/. Last accessed 9 Apr 2012

  • Weibull AC, Bengtsson J, Nohlgren E (2000) Diversity of butterflies in the agricultural landscape: the role of farming system and landscape heterogeneity. Ecography 23:743–750

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Xerces Society (2011) Red list of butterflies and moths. Xerces Society, Portland. http://www.xerces.org/red-list-of-butterflies-and-moths/. Last accessed 9 Apr 2012

Download references

Acknowledgments

We thank Jim Springer, Sharon Wander, Jane Hurwitz, Lisa Lewis, Jane V. Scott and volunteer butterfly counters with the North American Butterfly Association for collecting and sharing data. This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Meehan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meehan, T.D., Glassberg, J. & Gratton, C. Butterfly community structure and landscape composition in agricultural landscapes of the central United States. J Insect Conserv 17, 411–419 (2013). https://doi.org/10.1007/s10841-012-9523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-012-9523-y

Keywords

Navigation