Skip to main content

Advertisement

Log in

Species richness and composition patterns across trophic levels of true bugs (Heteroptera) in the agricultural landscape of the lower reach of the Tisza River Basin

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

River basins are among the most threatened ecosystems. The species diversity of several European river basins decreased seriously during the last decade due to loss of habitats and increasing land use pressure on the remaining habitats. We studied true bug assemblages in various land use types of grassland fragments and dikes as linear grassland habitats in the agricultural landscape of the lower reach of the Tisza River Basin. We tested the effects of the recorded variables of habitat quality, surrounding landscape and land use type on the abundance, species richness and composition of true bugs. Altogether, 5,389 adult Heteroptera individuals representing 149 species in 13 families were collected. The factors which influenced significantly the species richness of different trophic levels (i.e. herbivors, predators) and degrees of food specialization (i.e. generalist and specialist herbivors) were concordant. Contrary to this, the factors which influenced the abundance of the different feeding groups varied strongly. We emphasise the vegetation and land use types as primarily influential factors for insects. Excluding the grass-feeding species, the number of both generalist, specialist herbivorous and predaceous species were lower in agricultural swards, i.e. hay-meadows and pastures than in old field and dike habitats and their number increased with increasing vegetation diversity. Due to the high species richness and abundance observed in dike and old field habitats compared to agricultural swards, we emphasise their importance for conservation of insect diversity and we stress the negative effects of agricultural intensification on the remaining grasslands of the lower reach of the Tisza River Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alföldi L, Schweitzer F (2003) Geomorphology and hydrology of River Tisza. In: Teplán I (ed) A Tisza és vízrendszere I.—The River Tisza I, MTA Társadalomkutató Központ, Budapest, pp 41–52 (In Hungarian)

  • Aradi C, Lengyel S (2003) Environment and nature conservation of Tisza-valley. In: Teplán I (ed) A Tisza és vízrendszere I.—The River Tisza I, MTA Társadalomkutató Központ, Budapest, pp 263–276 (In Hungarian)

  • Batáry P, Orci KM, Báldi A, Kleijn D, Kisbenedek T, Erdős S (2007) Effects of local and landscape scale and cattle grazing intensity on Orthoptera assemblages of the Hungarian Great Plain. Basic Appl Ecol 8:280–290

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. URL: http://lme4.r-forge.r-project.org//

  • Benedek P (1969) Poloskák VII. Heteroptera VII. In: Fauna Hungariae 17(7) Akadémiai Kiadó, Budapest

  • Biedermann R, Achtziger R, Nickel H, Stewart AJA (2005) Conservation of grassland leafhoppers: a brief review. J Insect Conserv 9:229–243

    Article  Google Scholar 

  • Brändle M, Amarell U, Auge H, Klotz S, Brandl R (2001) Plant and insect diversity along a pollution gradient: understanding species richness across trophic levels. Biodivers Conserv 10:1497–1511

    Article  Google Scholar 

  • Bröring U, Wiegleb G (2005) Soil zoology II: Colonization, distribution, and abundance of terrestrial Heteroptera in open landscapes of former brown coal mining areas. Ecol Eng 24:135–147

    Article  Google Scholar 

  • Brown VK (1982) The phytophagous insect community and its impact on early successional habitats. In: Visser JH, Minks AK (eds) Proceedings of 5th international symposium insect-plant relationships, Wageningen, Pudoc, Wageningen, pp 205–213

  • Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280:745–747

    Article  PubMed  CAS  Google Scholar 

  • Coscaron MC, Melo MC, Coddington J, Corronca J (2009) Estimating biodiversity: a case study on true bugs in argentinian wetlands. Biodivers Conserv 18:1491–1507

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, New York

    Book  Google Scholar 

  • Curry JP (1994) Grassland invertebrates–ecology, influence on soil fertility and effect on plant growth. Chapman and Hall, London

    Google Scholar 

  • de la Peña NM, Butet A, Delettre Y, Morant Ph, Burel F (2003) Landscape context and carabid beetles (Coleoptera: Carabidae) communities of hedgerows in western France. Agr Ecosyst Environ 94:59–72

    Article  Google Scholar 

  • Deák JÁ (2007) 200 years of habitat changes and landscape use int he South-Tisza-valley, Hungary. In: Okruszko et al. (eds) Wetlands: monitoring, modelling and management. Taylor and Francis Group, London, pp 45–54

  • Decamps H (1993) River margins and environmental change. Ecol Appl 3:441–445

    Article  Google Scholar 

  • Di Giulio M, Edwards PJ, Meister E (2001) Enhancing insect diversity in agricultural grasslands: the roles of management and landscape structure. J Appl Ecol 38:310–319

    Article  Google Scholar 

  • Dolling WR (1991) The hemiptera. Oxford University Press, Oxford

    Google Scholar 

  • Duelli P, Obrist KM (1998) In search for the best correlates for local organismal biodiversity in cultivated areas. Biodivers Conserv 7:297–309

    Article  Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the northern third of the world. Science 266:753–762

    Article  PubMed  CAS  Google Scholar 

  • Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Global Ecol Biogeogr 16:440–448

    Article  Google Scholar 

  • Feber RE, Smith H, Macdonald DW (1996) The effects on butterfly abundance of the management of uncropped edges of arable fields. J Appl Ecol 33:1191–1205

    Article  Google Scholar 

  • Frank T, Künzle U (2006) Effect of early succession in wildflower areas on bug assemblages (Insecta: Heteroptera). Eur J Entomol 103:61–70

    Google Scholar 

  • Franklin JF (1993) Preserving biodiversity: species, ecosystems, or landscapes? Ecol Appl 3:202–205

    Article  Google Scholar 

  • Gallé L (2005) Floodplain of river Tisza as ecological coridor. In: Teplán I (ed) A Tisza és vízrendszere II.—The River Tisza II, MTA Társadalomkutató Központ, Budapest, pp 65–90 (In Hungarian)

  • Gallé R, Torma A (2009) Epigeic spider (Araneae) assemblages of natural forest edges in the Kiskunság (Hungary). Commun Ecol 10:146–151

    Article  Google Scholar 

  • Gallé L, Margóczi K, Kovács É, Györffy Gy, Körmöczi L, Németh L (1995) River valleys: are they ecological corridors? Tiscia 29:53–58

    Google Scholar 

  • Gallé R, Torma A, Körmöczi L (2010) Small-scale effect of habitat heterogeneity on invertebrate assemblages in sandy grasslands (Hungarian Great Plate). Polish J Ecol 58:333–346

    Google Scholar 

  • Gallé R, Vesztergom N, Somogyi T (2011) Environmental conditions affecting spiders in grasslands at the lower reach of the River Tisza in Hungary. Entomol Fennica 22:29–38

    Google Scholar 

  • Gange AC, Llewellyn M (1989) Factors affecting orchard colonisation by the black-need capsid (Blepharidopterus angulatus (Hem., Miridae) from alder windbreaks. Ann Appl Biol 114:221–230

    Article  Google Scholar 

  • Gillespie DR, McGregor RR (2000) The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation. Ecol Entomol 25:380–386

    Article  Google Scholar 

  • Godreau V, Bornette G, Frochot B, Amoros C, Castella E, Oerli B, Chambaud F, Oberti D, Craney E (1999) Biodiversity in the floodplain of Saône: a global approach. Biodiv Conserv 8:839–864

    Article  Google Scholar 

  • Gregory DM, Swanson FJ, McKee WA, Cummins K (1991) An ecosystem perspective of riparian zones. Bioscience 41:540–551

    Article  Google Scholar 

  • Güsewell S, Buttler A, Klötzli F (1998) Short-term and long-term effects of mowing on the vegetation of two calcareous fens. J Veg Sci 9:861–872

    Article  Google Scholar 

  • Halászfy É (1959) Poloskák II. Heteroptera II. In: Fauna Hungariae 17(2) Akadémiai Kiadó, Budapest

  • Heikkinen MW, MacMahon JA (2004) Assemblages of spiders on models of semi-arid shrubs. J Arachnol 32:313–323

    Article  Google Scholar 

  • Helden AJ, Leather SR (2004) Biodiversity on urban roundabouts–Hemiptera, management and the species-area relationship. Basic Appl Ecol 5:367–377

    Article  Google Scholar 

  • Hines J, Lynch ME, Denno RF (2005) Sap-feeding insect communities as indicators of habitat fragmentation and nutrient subsidies. J Insect Conserv 9:261–280

    Article  Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:724–732

    Google Scholar 

  • IUCN (1995) River corridors in Hungary: a strategy for the conservation of the Danube and its tributaries (1993–1994) IUCN, Gland Switzerland and Budapest

  • Jeanneret Ph, Schüpbach B, Luka H (2003) Quanti-flying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agr Ecosyst Environ 98:311–320

    Article  Google Scholar 

  • Jonsen ID, Fahrig L (1997) Response of generalist and specialist insect herbivores to landscape spatialstructure. Landscape Ecol 12:185–197

    Article  Google Scholar 

  • Kinkorová J, Kocourek F (2000) The effect of integrated pest management practices in an apple orchard on Heteroptera community structure and population dynamics. J Appl Entomol 124:381–385

    Google Scholar 

  • Kis B (1984) Heteroptera: Pentatomoidea. In: Fauna Republicii Socialiste Romănia 8 (8) Editura Academiei Republicii Socialiste Romănia, Bucureşti

  • Kis B (2001) Heteroptera: Coreoidea şi Pyrrhocorioidea. In: Fauna Romăniei 8 (9) Editura Academiei Romăne, Bucureşti

  • Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J, Ritchie ME, Howe KM, Reich PB, Siemann E, Groth J (1999) Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett 2:286–293

    Article  Google Scholar 

  • Koppányi T (1965) Hortobágyi magfüvesek Heteroptera népességeinek vizsgálata. Debreceni Agr Főisk Közl 11:155–162 (in Hungarian)

    Google Scholar 

  • Koricheva J, Mulder CPH, Schmid B, Joshi J, Huss-Danell K (2000) Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia 125:271–282

    Article  Google Scholar 

  • Krausz K, Pápai J, Gallé L (1995) Composition of Orthoptera assemblages in grassland habitats at Lower-Tisza flood plain. Tiscia 29:47–52

    Google Scholar 

  • Lambeets K, Hendrickx F, Vanacker S, Van Looy K, Maelfait J-P, Bonte D (2008) Assemblage structure and conservation value of spiders and carabid beetles from restored lowland river banks. Biodivers Conserv 17:3133–3148

    Article  Google Scholar 

  • Lambeets K, Vandegehuchte ML, Maelfait J-P, Bonte D (2009) Integrating environmental conditions and functional life history traits for riparian arthropod conservation planning. Biol Conserv 146:625–637

    Article  Google Scholar 

  • Lattin JD (1989) Bionomics of the Nabidae. Ann Rev Entomol 34:383–400

    Article  Google Scholar 

  • Lattin JD (1999) Bionomics of the Anthocoridae. Ann Rev Entomol 44:207–231

    Article  CAS  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology (2nd English edn). Elsevier Science BV, Amsterdam

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Littlewood NA, Pakeman RJ, Woodin SJ (2009) Isolation of habitat patches limits colonisation by moorland Hemiptera. J Insect Conserv 13:29–36

    Article  Google Scholar 

  • Maelfait J-P, De Keer R (1990) The border zone of an intensively grazed pasture as a corridor for spiders araneae. Biol Conserv 54:223–238

    Article  Google Scholar 

  • Marshall EJP, Moonen AC (2002) Fields margin in Northern Europe: their functions and interactions with agriculture. Agr Ecosyst Environ 89:5–21

    Article  Google Scholar 

  • McCollin D, Moore L, Sparks T (2000) The flora of a cultural landscape: environmental determinants of change revealed using archival sources. Biol Conserv 92:249–263

    Article  Google Scholar 

  • Morris MG (1973) The effects of seasonal grazing on the Heteroptera and Auchenorrhyncha (Hemiptera) of chalk grassland. J Appl Ecol 10:761–780

    Article  Google Scholar 

  • Morris MG (1975) Preliminary observations on the effects of burning on the Hemiptera (Heteroptera and Auchenorhyncha) of limestone grassland. Biol Conserv 7:311–319

    Article  Google Scholar 

  • Morris MG (1979) Responses of grassland invertebrates to management of cutting. II. Heteroptera. J Appl Ecol 16:417–432

    Article  Google Scholar 

  • Morris MG (1990) The Hemiptera of two sown calcareous grasslands. II. Differences between treatments. J Appl Ecol 27:379–393

    Article  Google Scholar 

  • Murdoch WW, Evans FC, Peterson CH (1972) Diversity and pattern in plants and insects. Ecology 53:819–829

    Article  Google Scholar 

  • Nagel HG (1979) Analysis of invertebrate diversity in a mixed prairie ecosystem. J Kansas Entomol Soc 52:777–786

    Google Scholar 

  • Naiman RJ, Décamps H, McClain ME (2005) Riparia: ecology, conservation, and management of 705 streamside communities. Elsevier Academic Press Inc, Amsterdam

    Google Scholar 

  • Nicholls CI, Parrella M, Altieri MA (2001) The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landscape Ecol 16:133–146

    Article  Google Scholar 

  • Nickel H, Hildebrandt J (2003) Auchenorrhyncha communities as indicators of disturbance in grasslands (Insecta, Hemiptera)—a case study from the Elbe flood plains (northern Germany). Agr Ecosyst Environ 98:183–199

    Article  Google Scholar 

  • Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the World’s large river systems. Science 308:405–408

    Article  PubMed  CAS  Google Scholar 

  • Noordijk J, Delille K, Schaffers AK, Sýkora KV (2009) Optimizing grassland management for flower-visiting insects in road side verges. Biol Conserv 142:2097–2103

    Article  Google Scholar 

  • Öckinger E, Smith HG (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59

    Article  Google Scholar 

  • Oksanen J (2011) Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2010) vegan: community EcolPackage. R package version 1.17-3, http://CRAN.R-project.org/package=vegan

  • Péricart J (1983) Hémiptères Tingidae Euro-Méditerranéens. In: Faune de France, France et régions limitrophes 69 Fédération Fracaise des Sociétés de Sciences Naturelles, Paris

  • Péricart J. (1984) Hémiptéres Berytidae Euro-Méditerranéens. In: Faune de France 70, Fédération Fracaise des Sociétés de Sciences Naturelles, Paris

  • Péricart J (1998a) Hémiptères Lygaeidae Euro-Méditerranéens 1. In.: Faune de France 84a, Fédération Fracaise des Sociétés de Sciences Naturelles, Paris

  • Péricart J. (1998b) Hémiptères Lygaeidae Euro-Méditerranéens 2. In.: Faune de France 84b, Fédération Fracaise des Sociétés de Sciences Naturelles, Paris

  • Péricart J (1998c) Hémiptères Lygaeidae Euro-Méditerranéens 3. In.: Faune de France 84c, Fédération Fracaise des Sociétés de Sciences Naturelles, Paris

  • Perner J, Voigt W, Bährmann R, Heinrich W, Marstaller R, Fabian B, Gregor K, Lichter D, Sander FW, Jones TH (2003) Responses of arthropods to plant diversity: changes after pollution cessation. Ecography 26:788–800

    Article  Google Scholar 

  • Perner J, Wytrykush C, Kahmen A, Buchmann N, Egerer I, Creutzburg S, Odat N, Audorff V, Weisser WW (2005) Effects of plant diversity, plant productivity and habitat parameters on arthropod abundance in montane European grasslands. Ecography 28:429–442

    Article  Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337

    Article  Google Scholar 

  • Pywell RF, Warman EA, Carvell C, Sparks TH, Dicks LV, Bennet D, Wright A, Critchley CNR, Sherwood A (2005) Providing foraging resources for bumblebees in intensively farmed landscapes. Biol Conserv 121:479–494

    Article  Google Scholar 

  • R Development Core Team (2007) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org

  • Remane R (1958) Die Besiedlung von Grünlandflachen verschiedener Herkunft durch Wanzen und Zikaden im Weser-Ems-Gebiet. Z Angew Entomol 42:353–400

    Article  Google Scholar 

  • Rhainds M, English-Loeb G (2003) Testing the resource concentration hypothesis with tarnished plant bug on strawberry: density of hosts and patch size influence the interaction between abundance of nymphs and incidence of damage. Ecol Entomol 28:348–358

    Article  Google Scholar 

  • Ripley B (2009) Tree: classification and regression trees. R package version 1.0-27. URL: http://CRAN.R-project.org/package=tree

  • Roberts DW (2010) labdsv: ordination and multivariate analysis for ecology. URL: http://ecology.msu.montana.edu/labdsv/R

  • Root RB (1973) Organization of a plant arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Roth S (2003) Spatial and temporal pattern of colonization of Nabidae (Heteroptera) in alfalfa (Medicago sativa). J Appl Entomol 127:221–227

    Article  Google Scholar 

  • Saarinen K, Valtonen A, Jantunen J, Saarnio S (2005) Butterflies and diurnal moths along road verges: does road type affect diversity and abundance? Biol Conserv 123:403–412

    Article  Google Scholar 

  • Sanderson RA, Rushton SP, Cherrill AJ, Byrne JP (1995) Soil, vegetation and space: an analysis of their effects on the invertebrate communities of a moorland in north-east England. J Appl Ecol 32:506–518

    Article  Google Scholar 

  • Schaefer CW, Panizzi AR (2000) Economic Importance of Heteroptera: a general view. In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, USA, pp 3–8

    Chapter  Google Scholar 

  • Schuh RT, Slater JA (1995) True bugs of the world (Hemiptera: Heteroptera). Cornell University Press, New York

    Google Scholar 

  • Schwab A, Dubois D, Fried PM, Edwards PJ (2002) Estimating the biodiversity of hay meadows in northeastern Switzerland on the basis of vegetation structure. Agr Ecosyst Environ 93:197–209

    Article  Google Scholar 

  • Sendzimir J, Magnuszewski P, Flachner Zs, Balogh P, Molnár G, Sárvári A, Nagy Zs (2008) Assessing the resilience of a river management regime: informal learning in a shadow network in the Tisza River Basin. Ecol Soc 13:11. URL: http://www.ecologyandsociety.org/vol13/iss1/art11/

  • Sheehan W (1986) Response by specialist and generalist natural enemies to agroecosystem diversification: a selective review. Environ Entomol 15:456–461

    Google Scholar 

  • Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79:2057–2070

    Article  Google Scholar 

  • Siemann E, Tilman D, Haarstad J, Ritchie M (1998) Experimental tests of the dependence of arthropod diversity on plant diversity. Am Nat 152:738–750

    Article  PubMed  CAS  Google Scholar 

  • Söderström B, Hedblom M (2007) Comparing movement of four butterfly species in experimental grassland strips. J Insect Conserv 11:333–342

    Article  Google Scholar 

  • Sommerwerk N, Hein T, Schneider-Jakoby M, Baumgartner C, Ostojić A, Paunović M, Bloesch J, Siber R, Tockner K (2009) The Danube river basin. In: Tockner K, Uehlinger U, Robinson CT (eds) Rivers of Europe. Elsevier Academic Press Inc, Amsterdam, pp 59–112

    Chapter  Google Scholar 

  • Southwood TRE, Brown VK, Reader PM (1979) The relationships of plant and insect diversities. Biol J Linn Soc 12:327–348

    Article  Google Scholar 

  • Standen V (2000) The adequacy of collecting techniques for estimating species richness of grassland invertebrates. J Appl Ecol 37:884–893

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456

    Article  Google Scholar 

  • Stoner A (1972) Plant feeding by Nabis, a Predaceous Genus. Environ Entomol 1:557–558

    Google Scholar 

  • Szép T (1997) Natural values and conditions for the sustainable development along the Upper Tisza. Proceedings of the second international regional conference on environmental and economical development. Szabolcs-Szatmár-Bereg County, Hungarian Academy of Sciences, Nyíregyháza, Hungary, pp 37–41

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Tikka PM, Högmander H, Koski PS (2001) Road and railway verges serve as dispersal coridors for grassland plants. Landscape Ecol 16:659–666

    Article  Google Scholar 

  • Tillman PG, Northfield TD, Mizell RF, Riddle TC (2009) Spatiotemporal patterns and dispersal of Stink Bugs (Heteroptera: Pentatomidae) in Peanut-Cotton Farmscapes. Environ Entomol 38:1038–1052

    Article  PubMed  CAS  Google Scholar 

  • Tilman D (1986) A consumer-resource approach to community structure. Am Zool 26:5–22

    Google Scholar 

  • Tockner K, Uehlinger U, Robinson CT, Tonolla D, Siber R, Peter FD (2009) Introduction of European rivers. In: Tockner K, Uehlinger U, Robinson CT (eds) Rivers of Europe. Elsevier Academic Press Inc, Amsterdam, pp 1–22

    Chapter  Google Scholar 

  • Torma A, Körmöczi L (2009) The influence of habitat heterogeneity on the fine-scale pattern of a Heteroptera assemblage in a sand grassland. Community Ecol 10:75–80

    Article  Google Scholar 

  • Torma A, Varga Cs, Varga M (2010) Spatial pattern of true bugs (Heteroptera) in a heterogeneous grassland–preliminary results. Acta Phytopathol Entomol Hung 45:81–87

    Article  Google Scholar 

  • Tscharntke T, Greiler HJ (1995) Insect communities, grasses and grasslands. Ann Rev Entomol 40:535–558

    Article  CAS  Google Scholar 

  • Tscharntke T, Kruess A (1999) Habitat fragmentation and biological control. In: Hawkins BA, Cornell HW (eds) Theoretical approaches to biological control. Cambridge University Press, Cambridge, pp 190–205

    Chapter  Google Scholar 

  • Vásárhelyi T (1978) Poloskák V. Heteroptera V. In: Fauna Hungariae 17(5) Akadémiai Kiadó, Budapest

  • Vásárhelyi T (1983) Poloskák III. Heteroptera III. In: Fauna Hungariae 17(3) Akadémiai Kiadó, Budapest

  • Wagner E (1952) Blindwanzen oder Miriden. In: Die Tierwelt Deutschlands 41, Gustav Fischer Verlag, Jena

  • Wagner E (1966) Wanzen oder Heteropteren. I. Pentatomorpha. In: Die Tierwelt Deutschlands 54, Gustav Fischer Verlag, Jena

  • Wagner E (1967) Wanzen oder Heteropteren. II Cimicomorpha. In: Die Tierwelt Deutschlands 55, Gustav Fischer Verlag, Jena

  • Ward JV, Tockner K, Schiemer F (1999) Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regul River 15:125–139

    Article  Google Scholar 

  • Woodcock BA, Potts SG, Westbury DB, Ramsay AJ, Lambert M, Harris SJ, Brown VK (2007) The importance of sward architectural complexity in structuring predatory and phytophagous invertebrate assemblages. Ecol Entomol 32:302–311

    Article  Google Scholar 

  • Zurbrügg C, Frank T (2006) Factors influencing bug diversity (Insecta: Heteroptera) in semi-natural habitats. Biodivers Conserv 15:275–294

    Article  Google Scholar 

  • Zwick P (1992) Stream habitat fragmentation—a threat to biodiversity. Biodivers Conserv 1:80–97

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to L. Körmöczi and M. Zalatnai for their help in sampling the vegetation and we also thank G. Laskay for the language correction. The present study was supported by NKFP 6/013/2005 grant and the HU-RO/0901/205/2.2.2 project. Further we thank the anonymous referee for the useful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Torma.

Appendix

Appendix

See Table 4.

Table 4 The list of the collected Heteroptera species

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torma, A., Császár, P. Species richness and composition patterns across trophic levels of true bugs (Heteroptera) in the agricultural landscape of the lower reach of the Tisza River Basin. J Insect Conserv 17, 35–51 (2013). https://doi.org/10.1007/s10841-012-9484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-012-9484-1

Keywords

Navigation