Skip to main content

Advertisement

Log in

Climate-driven changes in pollinator assemblages during the last 60 years in an Arctic mountain region in Northern Scandinavia

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Climate change is occurring more rapidly in the Arctic than elsewhere, and is predicted to have a large impact on biodiversity, since entire cold-adapted ecosystems are likely to disappear. Here, we highlight changes in the insect species richness and community composition of wild bees, butterflies and moths over 60 years in an area situated above the tree limit (Padjelanta National Park) in northern Sweden. Although there were changes in habitat availability, indicated by a significant decrease in the area of a glacier (from 22 km2 in 1898 to 7.5 km2 in 2009), and an increase in the area of birch forest in the National Park, we nevertheless found relatively moderate changes in the insect communities. Indeed, the observed number of species increased from 52 in 1944 to 64 in 2008. Remarkably, the mean number of butterflies and moths per site, but not wild bee species, increased significantly. Among the species that were recorded in both periods, the average altitude of 17 species had shifted downhill, 12 shifted uphill, and the altitude of the remaining 17 had not changed. While alterations in community composition were greater at the highest altitudes, changes in the insect community were smaller than expected, indeed much smaller than those reported from agricultural landscapes in North-West Europe. Interestingly, our results suggest that lower alpine altitudes (600–800 m a.s.l.) have become colonized by southern species, but also that high alpine areas (above 1,000 m a.s.l.) have recently become colonized by high alpine species previously absent from these sites, likely as a result of increasing habitat availability. We conclude that wild bee, butterfly, and moth communities in Arctic areas in northern Sweden are in flux, as a result of climate change and suggest that increased attention must be given to conservation planning in cold areas. In addition, we propose that monitoring programs should be established, because more pronounced climate-driven changes can be expected in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albrecht M, Riesen M, Schmid B (2010) Plant-pollinator network assembly along the chronosequence of a glacier foreland. Oikos 119:1610–1624

    Article  Google Scholar 

  • Ashton S, Gutierrez D, Wilson RJ (2009) Effects of temperature and elevation on habitat use by a rare mountain butterfly: implications for species responses to climate change. Ecol Entomol 34:437–446

    Article  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994

    Article  PubMed  CAS  Google Scholar 

  • Bergwall HE (1970) Ekologiska iaktagelser över några humlearter (Bombus Latr.) vid Staloluokta inom Padjelanta nationalpark, Lule lappmark. Entom Tidskr 91:3–23 [in Swedish with English abstract]

    Google Scholar 

  • Bolch T, Menounos B, Wheate R (2010) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens Environ 114:127–137

    Article  Google Scholar 

  • Boutin S, Krebs C, Boonstra R, Dale M, Hannon S, Martin K, Sinclair A, Smith J, Turkington R, Blower M, Byrom A, Doyle FI, Doyle C, Hik D, Hofer L, Hubbs A, Karels T, Murray D, Nams V, O’Donoghue M, Rohner C, Schweiger S (1995) Population changes of the vertebrate community during a snowshoe hare cycle in Canada’s boreal forest. Oikos 74:69–80

    Article  Google Scholar 

  • Brinck P, Wingstrand KG (1949) The mountain fauna of the Virihaure area in Swedish Lapland. I. General account. Lunds universitets årsskrift N.F. Avd 2 Bd 45 Nr 2. Kungl fysiogr säll handl NF Bd 60 Nr 2. Gleerup, Lund

    Google Scholar 

  • Brinck P, Wingstrand KG (1952) The mountain fauna of the Virihaure area in Swedish Lapland. Lunds universitets årsskrift N.F. Avd 2 Bd 46 Nr 2. Kungl fysiogr säll handl NF Bd 61 Nr 2. Gleerup, Lund

    Google Scholar 

  • Callaghan TV, Bjorn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G, Henttonen H (2004) Effects on the structure of Arctic ecosystems in the short- and long-term perspectives. Ambio 33:436–447

    PubMed  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA. doi:10.1073/pnas.1014743108

    Google Scholar 

  • Cannone N, Sgorbati S, Guglielmin M (2007) Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 5:360–364

    Article  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Chen IC, Shiu HJ, Benedick S, Holloway JD, Chey VK, Barlow HS, Hill JK, Thomas CD (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc Natl Acad Sci USA 106:1479–1483

    Article  PubMed  CAS  Google Scholar 

  • Colwell RK (2007) EstimateS: Statistical estimation of species richness and shared species from samples. Estimate 8

  • Curry-Lindahl K (1963) Natur i Lappland. Svensk Natur, Uppsala

    Google Scholar 

  • de Vernal A, Hillaire-Marcel CH (2008) Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320:1622–1625

    Article  PubMed  Google Scholar 

  • Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Change Biol 17:990–996

    Article  Google Scholar 

  • Dramstad WE (1996) Do bumblebees (Hymenoptera: Apidae) really forage close to their nests? J Insect Behav 9:163–182

    Article  Google Scholar 

  • Esseen PA, Ehnström B, Ericson L, Sjöberg K (1997) Boreal forests. Ecol Bull 46:16–47

    Google Scholar 

  • Forister ML, McCall AC, Sanders NJ, Fordyce JA, Thorne JH, O’Brien J, Waetjen DP, Shapiro AM (2010) Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc Natl Acad Sci USA 107:2088–2092

    Article  PubMed  CAS  Google Scholar 

  • Franzén M, Johannesson M (2007) Predicting extinction risk of butterflies and moths (MacroLepidoptera) from distribution patterns and specie characteristics. J Insect Conserv 11:367–390

    Article  Google Scholar 

  • Franzén M, Molander M (in press) Förändringar av insektsfaunan i Padjelanta nationalpark. Entom Tidskr [in Swedish with English abstract]

  • Franzén M, Molander M, Norén L, Nilsson LA (in press) Förändringar och bevarande av Kullabergs gaddstekelfauna. Entom Tidskr [in Swedish with English abstract]

  • Hamberg A (1910) Gesteine u. tektonik des Sarekgebirges nebst einem überblick der Scandinavische gebirgskette, vol 32. Geologiska föreningens förhandlingar, Stockholm

    Google Scholar 

  • Hamberg A (1915) Iakttagelser över lufttempertauren och skogsgränsen i Sarektrakten, vol 37. Geologiska föreningens förhandlingar, Stockholm

    Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, New York

    Google Scholar 

  • Herfindal I, Linnell JDC, Elmhagen B, Andersen R, Eide NE, Frafjord K, Henttonen H, Kaikusalo A, Mela M, Tannerfeldt M, Dalén L, Strand O, Landa A, Angerbjörn A (2010) Population persistence in a landscape context: the case of endangered Arctic fox populations in Fennoscandia. Ecography 33:932–941

    Article  Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B Biol 269:2163–2171

    Article  CAS  Google Scholar 

  • Hoekstra JM, Boucher TM, Taylor H, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Article  Google Scholar 

  • Hoye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC (2007) Rapid advancement of spring in the High Arctic. Curr Biol 17:R449–R451

    Article  PubMed  CAS  Google Scholar 

  • Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160

    Article  PubMed  Google Scholar 

  • Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subArctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264

    Article  PubMed  Google Scholar 

  • Karlsson L (1981) Kärlväxtfloran vid Sierkatjåkkå. Svensk Bot Tidskr 75:123–128 [in Swedish with English abstract]

    Google Scholar 

  • Karlsson L (1983) Floristiskt från sydvästra Padjelanta. Svensk Bot Tidskr 77:217–220 [in Swedish with English abstract]

    Google Scholar 

  • Karsholt O, Razowski J (1996) The Lepidoptera of Europe—a distributional checklist. Apollo books, Stenstrup

    Google Scholar 

  • Killengreen ST, Ims RA, Yoccoz NG, Brathen KA, Henden JA, Schott T (2007) Structural characteristics of a low Arctic tundra ecosystem and the retreat of the Arctic fox. Biol Conserv 135:459–472

    Article  Google Scholar 

  • Krebs CJ, Kenney AJ, Gilbert S, Danell K, Angerbjörn A, Erlinge S, Bromley RG, Shank C, Carriere S (2002) Synchrony in lemming and vole populations in the Canadian Arctic. Can J Zool 80:1323–1333

    Article  Google Scholar 

  • Kullman L (2010a) A richer, greener and smaller alpine World: review and projection of warming-Induced plant cover change in the Swedish Scandes. Ambio 39:159–169

    Article  PubMed  Google Scholar 

  • Kullman L (2010b) Alpine flora dynamics a critical review of responses to climate change in the Swedish Scandes since the early 1950s. Nord J Bot 28:398–408

    Article  Google Scholar 

  • Kullman L, Öberg L (2009) Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J Ecol 97:415–429

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Partel M, Pino J, Roda F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  • Laidre KL, Stirling I, Lowry LF, Wiig O, Heide-Jorgensen MP, Ferguson SH (2008) Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol Appl 18:97–125

    Article  Google Scholar 

  • Lantmäteriet G (2010) http://saccess.lantmateriet.se

  • Laurance WF, Useche DC, Shoo LP, Herzog SK, Kessler M, Escobar F, Brehm G, Axmacher JC, Chen I-C, Gámez LA, Hietz P, Fiedler K, Pyrcz T, Wolf J, Merkord CL, Cardelus C, Marshall AR, Ah-Peng C, Aplet GH, del Coro Arizmendi M, Baker WJ, Barone J, Brühl CA, Bussmann RW, Cicuzza D, Eilu G, Favila ME, Hemp A, Hemp C, Homeier J, Hurtado J, Jankowski J, Kattán G, Kluge J, Krömer T, Lees DC, Lehnert M, Longino JT, Lovett J, Martin PH, Patterson BD, Pearson RG, Peh KSH, Richardson B, Richardson M, Samways MJ, Senbeta F, Smith TB, Utteridge TMA, Watkins JE, Wilson R, Williams SE, Thomas CD (2011) Global warming, elevational ranges and the vulnerability of tropical biota. Biol Conserv 144:548–557

    Article  Google Scholar 

  • Lindström Å, Green M, Ottvall R, Svensson S (2008) Övervakning av fåglarnas populationsutveckling. Lunds universitet, Lund

    Google Scholar 

  • Löken A (1973) Studies on Scandinavian bumble bees (Hymenoptera, Apidae). Norsk Entom Tidsskr 20:1–218

    Google Scholar 

  • Löken A (1992) Norske insekttabeller nr. 9 Tabell til norske arter. Humler. Norsk Entomologisk Förening, Oslo

    Google Scholar 

  • Lundberg H (1980) Effects of weather on foraging-flights of bumblebees (Hymenoptera, Apidae) in a subalpine/alpine area. Holarctic Ecol 3:104–110

    Google Scholar 

  • Lundberg H, Ranta E (1980) Habitat and food utilization in a subarctic bumblebee community. Oikos 35:303–310

    Article  Google Scholar 

  • Lundh NG (1998) Om bruket och missbruket av våra fjäll. Fauna och Flora 93:29–38 [in Swedish with English abstract]

    Google Scholar 

  • MacDonald GM (2010) Global warming and the Arctic: a new world beyond the reach of the Grinnellian niche? J Exp Biol 213:855–861

    Article  PubMed  CAS  Google Scholar 

  • Maes D, van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:263–276

    Article  Google Scholar 

  • McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) The route to extinction: population dynamics of a threatened butterfly. Oecologia 132:538–548

    Article  Google Scholar 

  • Nesje A, Bakke J, Dahl SO, Lie Ø, Matthews JA (2007) Norwegian mountain glaciers in the past, present and future. Glob Planet Change 60:10–27

    Article  Google Scholar 

  • Nilsson SG, Franzén M (2009) Alarmerande minskning av dagfjärilar. Fauna och Flora 104:2–11 [in Swedish with English abstract]

    Google Scholar 

  • Nilsson SG, Franzén M, Jönsson E (2008) Long-term land-use changes and extinction of specialised butterflies. Insect Conserv Div 1:197–207

    Google Scholar 

  • Nilsson SG, Franzén M, Norén L (2009) Biologisk mångfald i Linnés hembygd i Småland 6. Humlor och solitära bin (Hymenoptera: Apoidea). Entomol Tidskr 130:161–184 [in Swedish with English abstract]

    Google Scholar 

  • Öckinger E, Hammarstedt O, Nilsson SG, Smith HG (2006) The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biol Conserv 128:564–573

    Article  Google Scholar 

  • Overpeck J, Rind D, Lacis A, Healy R (1996) Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature 384:447–449

    Article  CAS  Google Scholar 

  • Parkinson CL, Cavalieri DJ (2008) Arctic sea ice variability and trends, 1979–2006. J Geophys Res Oceans 113. doi: 10.1029/2007JC004564

  • Parmesan C (2001) Coping with modern times? Insect movement and climate change. In: Woiwood IP, Reynolds DR, Thomas CD (eds) Insect movement: mechanisms and consequences. CABI, Wallingford, pp 387–413

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman and Hall, London

    Google Scholar 

  • Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler Nicholas JC, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu QG, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu CZ, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  PubMed  CAS  Google Scholar 

  • Schytt V (1988) Glaciers of Europe—glaciers of Sweden. In: Williams RS, Ferrigino JG (eds) Satellite image atlas of glaciers of the world—Europe US Geol Survey. Reston, Virginia, pp 111–125

    Google Scholar 

  • Selander S (1950) Kärlväxtfloran i sydvästra Lule lappmark I, II. Acta Phytogeogra Suec 27:28

    Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kühn I, van Swaay C, Verovnik R, Warren MS, Wiemers M, Hanspach J, Hickler T, Kühn E, van Halder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk atlas of European butterflies. Pensoft, Sofia

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Tengwall TÅ (1920) Die vegetation des Sarekgebietes. Naturwiss. Unters des Sarekgeb in Schwedische-Lappland. Band III. Botanik, Stockholm

    Google Scholar 

  • Thomas JA (1984) The conservation of butterflies in temperate countries: past efforts and lessons for the future. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic Press, London, pp 333–353

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson A, Phillips OL, Williams SE (2004a) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004b) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881

    Article  PubMed  CAS  Google Scholar 

  • van Bogaert R, Haneca K, Hoogesteger J, Jonasson C, De Dapper M, Callaghan TV (2011) A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. J Biogeogr 38:907–921

    Article  Google Scholar 

  • Väre H, Ohtonen R, Mikkola K (1996) The effects and extent of heavy grazing by reindeer in the oligotrophic pine heaths in northeastern Fennoscandica. Ecography 19:245–253

    Google Scholar 

  • von Sydow U (1983) Vegetationskarta över de svenska fjällen. Kartblad nr 6. LiberKartor, Stockholm

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Walther GR, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Article  Google Scholar 

  • Walther-Hellwig K, Frankl R (2000) Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., Apidae), in an agricultural landscape. J Appl Entomol 124:299–306

    Article  Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  PubMed  CAS  Google Scholar 

  • Westman J (1898) Beobachtungen über die Gletscher von Sulitelma und Ålmajalos. Bull Geol lnst Uppsala 4:45–78

    Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  PubMed  Google Scholar 

  • Wookey PA, Aerts R, Bardgett RD, Baptist F, Brathen KA, Cornelissen JHC, Gough L, Hartley IP, Hopkins DW, Lavorel S, Shaver GR (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Change Biol 15:1153–1172

    Article  Google Scholar 

Download references

Acknowledgments

The county administration in Norrbotten gave permission to work in the National Park. Henrik Jeansson, Johnny Möllerström and Andreas Nord assisted in the field. Björn Cederberg, L. Anders Nilsson and Lars Norén identified the bees. Two anonymous referees gave valuable comments on an earlier draft. Robert Franzén made the maps of the glacier and the birch forest. Megan Kutzer improved the English. The study was funded by Göran Gustafssons Stiftelse för natur och miljö i Lappland, Signhild Engkvists Stiftelse and the Swedish Research Council (contract 621-2010-5589) to EÖ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Franzén.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzén, M., Öckinger, E. Climate-driven changes in pollinator assemblages during the last 60 years in an Arctic mountain region in Northern Scandinavia. J Insect Conserv 16, 227–238 (2012). https://doi.org/10.1007/s10841-011-9410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-011-9410-y

Keywords

Navigation