Skip to main content

Advertisement

Log in

Population extinctions in the Italian diurnal lepidoptera: an analysis of possible causes

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

In depth studies of patterns of extinction are fundamental to understand species vulnerability, in particular when population extinctions are not driven by habitat loss, but related to subtle changes in habitat quality and are due to ‘unknown causes’. We used a dataset containing over 160,000 non-duplicate individual records of occurrence (referred to 280 butterflies and 43 zygenid moths), and their relative extinction data, to carry out a twofold analysis. We identified ecological preferences that influence extinction probability, and we analysed if all species were equally vulnerable to the same factors. Our analyses revealed that extinctions were non-randomly distributed in space and time, as well as across species. Most of the extinctions were recorded in 1901–1950 and, as expected, populations at their range edges were more prone to become extinct for non-habitat-related causes. Ecological traits were not only unequally distributed between extinction and non-extinction events, but also not all ecological features had the same importance in driving population vulnerability. Hygrophilous and nemoral species were the most likely to experience population losses and the most prone to disappear even when their habitat remained apparently unchanged. Species vulnerability depends on both ecological requirements and threat type: in fact, each species showed a distinct pattern of vulnerability, depending on threats. We concluded that the analysis may be an important step to prevent butterfly declines: species that are strongly suffering due to ‘unknown changes’ are in clear and urgent need of more detailed auto-ecological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Allioni C (1766) Lepidoptera. In: Manipulus Insectorum Taurinensium a Carolo Allionio editus. Miscellanea di Filosophia e Matematica della Società Reale di Torino per gli anni 1762–1765 N. 3185–3198

  • Balletto E, Kudrna O (1985) Some aspects of the conservation of the butterflies (Lepidoptera: Papilionoidea) in Italy, with recommendations for the future strategy. Boll Soc Ent Ital 117:39–59

    Google Scholar 

  • Balletto L, Bonelli S, Cassulo L (2005) Mapping the Italian butterfly diversity for conservation. In: Kühn E, Feldmann R, Thomas JA, Settele J (eds) Studies on the ecology and conservation of butterflies in Europe. 1. General concepts and case studies. Pensoft Publ. Co., Sofia & Moscow, pp 71–76

    Google Scholar 

  • Balletto E, Bonelli S, Cassulo L (2007) Insecta Lepidoptera Papilionoidea. In: Ruffo S, Stoch F (eds) Checklist and distribution of the Italian Fauna. 10,000 terrestrial and inland water species. 2nd and revised edition—Memorie del Museo Civico di Storia Naturale di Verona, 2° serie, Sez. Scienze della Vita. 17: 257–261, 280 pls on CD-ROM

  • Balletto E, Bonelli S, Borghesio L, Casale A, Brandmayr P, Vigna-Taglianti A (2010) Hotspots of biodiversity and conservation priorities: a methodological approach. It J Zool 77:2–13

    Article  Google Scholar 

  • Bätzing W, Perlik M, Dekleva M (1996) Urbanization and depopulation in the Alps. Mt Res Devel 16:335–350

    Article  Google Scholar 

  • Bertaccini E, Fiumi G (1999) Bombici e Sfingi d’Italia (Lepidoptera Zygaenidae). In: Giuliano Russo (ed.) Vol. III—Natura. Monterenzio (BO)

  • Castellano S, Rosso A, Giacoma C (2004) Active choice, passive attraction and the cognitive machinery of acoustic preferences. Anim Behav 68:323–329

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296:904–907

    Article  PubMed  CAS  Google Scholar 

  • Chemini C, Rizzoli A (1993) Land use change and biodiversity conservation in the Alps. J MT Ecol 7:1–7

    Google Scholar 

  • Chiavetta M (1998) Le farfalle dell’Emilia-Romagna. Nuova Editoriale Grasso, Bologna

    Google Scholar 

  • Cowlishaw G, Pettifor RA, Isaac NJB (2009) High variability in patterns of population decline: the importance of local processes in species extinctions. Proc R Soc B 276:63–69

    Article  PubMed  Google Scholar 

  • Cupani F (1713) Panphyton siculum sive historia naturalis de animalibus stirpibus, fossilibus, quae in Sicilia, vel in circuito ejus invenientur. Panormi, Ex Typographia Regia Antonini Epiro

  • de Prunner L (ed) (1798) Lepidoptera Pedemontana Illustrata. Mathaeus Guaita, Augusta Taurinorum

    Google Scholar 

  • Dennis RLH, Sparks TH, Hardy PB (1999) Bias in butterfly distributions maps: the effects of sampling effort. J Insect Conserv 3:33–34

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, Van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966

    Article  Google Scholar 

  • Diamond JM (1987) Extant unless proven extinct? Or extinct unless proven extant? Conserv Biol 1:77–79

    Article  Google Scholar 

  • EEA-European Environment Agency (2005) The European environment—state and outlook 2005. Copenhagen. http://europa.eu.int

  • Ehrlich PR (1994) Energy use and biodiversity loss. Phil Trans R Soc Lond B 344:99–104

    Article  Google Scholar 

  • Ehrlich PR, Daily GC (1993) Population extinction and saving biodiversity. Ambio 22:64–68

    Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biol 12:1545–1553

    Article  Google Scholar 

  • Giorna A (1791) Calendario entomologico, ossia osservazioni sulle stagioni degl’Insetti nel clima Piemontese e particularmente ne’ contorni di Torino. Nella Stamperia Reale, Torino

    Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford, USA

    Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Hobbs RJ, Mooney HA (1998) Broadening the extinction debate: population deletions and additions in California and Western Australia. Conserv Biol 12:271–283

    Article  Google Scholar 

  • Hope ACA (1968) A simplified Monte Carlo significance test procedure. J R Stat Soc 30:582–598

    Google Scholar 

  • Hopkins GW, Freckleton RP (2002) Declines in the numbers of amateur and professional taxonomists: implications for conservation. Anim Conserv 5:245–249

    Article  Google Scholar 

  • Hübner L (1790) Beiträge zur Geschiche der Schmerrelinge. Augsburg

  • Huemer P (1996) Lepidopteren im Bereich der dealpinen flüsse Meduna und Tagliamento (Friuli-Venezia Giulia, Norditalien). Gortania Atti Mus Friulano St Nat 18:201–214

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

    Google Scholar 

  • Isaac NJB, Cowlishaw G (2004) How species respond to multiple extinction threats. Proc R Soc Lond B 271:1135–1141

    Article  Google Scholar 

  • Kitschelt R (1925) Zusammenstellung der bisher in dem ehemaligen Gebiete von Südtirol beobachteten Grossschmetterlinge. Im Eigenverlage des Verfassers, Wien. xvii + 421 pp

  • Koh LP, Sodhi NS, Brook BW (2004) Ecological correlates of extinction proneness in tropical butterflies. Conserv Biol 18:1571–1578

    Article  Google Scholar 

  • Laiolo P, Dondero F, Ciliento E, Rolando A (2004) Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. J Appl Ecol 41:294–304

    Article  Google Scholar 

  • Lasanta T, González-Hidalgo J, Vincente-Serrano SM, Sferi E (2006) Using landscape ecology to evaluate an alternative management scenario in abandoned Mediterranean mountain areas. Land Urb Plan 78:101–114

    Article  Google Scholar 

  • Lobo JM, Lumaret JP, Robert P (1997) Taxonomic databases as tools in spatial biodiversity research. Ann Soc Entomol Fr 33:129–138

    Google Scholar 

  • Maes D, Gilbert M, Titeux N, Goffart P, Dennis RLH (2003) Prediction of butterfly diversity hotspots in Belgium: a comparison of statistically focused and land-use focused models. J Biogeogr 30:1907–1920

    Article  Google Scholar 

  • McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516

    Article  Google Scholar 

  • Menendez R, Gonzalez-Megias A, Hill JK, Braschler B, Willis SG, Collingham Y, Fox R, Roy DB, Thomas CD (2006) Species richness changes lag behind climate change. Proc R Soc Lond B 273:1465–1470

    Article  Google Scholar 

  • Meyer M (1981) Révision systématique, chorologique et écologique des populations européennes de Lycaena (Helleia) helle Denis & Schiffermüller, 1775 (Lep. Lycaenidae). Linneana belgica 8(6): 238–260, (8): 345–358, (10): 451–466

  • New T (2007) Understanding the requirements of the insects we seek to conserve. J Insect Conserv 11:95–97

    Article  Google Scholar 

  • Nowicki P, Bonelli S, Barbero F, Balletto E (2009) Relative importance of density-dependent regulation and environmental stochasticity for butterfly population dynamics. Oecologia 161:227–239

    Article  PubMed  Google Scholar 

  • Olsson EGA, Austrheim G, Grenne SN (2000) Landscape change patterns in mountains, land use and environmental diversity, mid-Norway 1960–1993. Landscape Ecol 15:155–177

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pauly D (1995) Anedoctes and the shifting baseline syndrome of fisheries. Trend Ecol Evol 10:430

    Article  CAS  Google Scholar 

  • Petagna V (1786) Specimen Insectorum ulterioris Calabriae. Neapoli, Typis Petri Perger

  • Pimm SL, Askins RA (1995) Forest losses predict bird extinctions in eastern North America. Proc Natl Acad Sci USA 92:9343–9347

    Article  PubMed  CAS  Google Scholar 

  • Preiss E, Martin JL, Debussche M (1997) Rural depopulation and recent landscape changes in a Mediterranean region: consequences to the breeding avifauna. Landscape Ecol 12:51–61

    Article  Google Scholar 

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B 267:1947–1952

    Article  CAS  Google Scholar 

  • Rocci U (1911) Contribuzione allo studio dei Lepidotteri del Piemonte. Note ed osservazioni. I. Atti Soc Ligustica Sci Nat Genova 22:153–221

    Google Scholar 

  • Roy DB, Rothery P, Moss D, Pollard E, Thomas JA (2001) Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J Animal Ecol 70:201–217

    Article  Google Scholar 

  • Ruffo S, Stoch F (2007) Checklist and Distribution of the Italian Fauna. 10,000 terrestrial and inland water species. 2nd and revised edition—Memorie del Museo Civico di Storia Naturale di Verona, 2° serie, Sez. Scienze della Vita. 17: 257–261, 280 pls on CD-ROM

  • Scalercio S, Sapia M, Brandmayr P (2006) Changes in species assemblages: Carabid beetles and butterflies after a quarter of century on the top of the Pollino Mountains, Italy. In: Price MF (ed) Global change in mountain regions. Sapiens Publishing, Duncow, Kirkmahoe, Dumfrieshire, pp 160–161

    Google Scholar 

  • Scopoli JA (1763) Entomologia carniolica, exhibens insecta Carnioliae indigena et distributa in ordines, genera, species, varietates. Methodo Linnaeano. Vindobonae, Typis Ioannis Thomae Trattnerm. Vindobonae

  • Settele J, Kühn E (2009) Insect conservation. Science 325:41–42

    Article  PubMed  CAS  Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kühn I, Van Swaay CAM, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kühn E, Van Halder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk atlas of European butterflies. Pensoft, Moscow

    Google Scholar 

  • Shreeve TG, Dennis RLH, Roy DB, Moss D (2001) An ecological classification of British butterflies: ecological attributes and biotope occupancy. J Insect Conserv 5:145–161

    Article  Google Scholar 

  • Stefanescu C, Herrando S, Páramo F (2004) Butterfly species richness in the North-Western Mediterranean Basin: the role of natural and human-induced factors. J Biogeogr 31:905–915

    Article  Google Scholar 

  • Storace L (1952) Su alcune Lycaenidae italiane, specialmente della zona di Arquata Scrivia (Piemonte) (Lepidoptera). Memorie Soc Ent Ital 31:132–154

    Google Scholar 

  • Thomas JA (1991) Rare species conservation: case studies of European butterflies. Symp Br Ecol Soc 31:149–197

    Google Scholar 

  • Thomas CD (1994) Local extinctions, colonizations and distributions: habitat tracking by British butterflies. In: Leather SR, Watt AD, Walters KFA, Mills NJ (eds) Individuals, populations and patterns in ecology. Intercept, Andover, pp 319–336

    Google Scholar 

  • Thomas JA (1995) The conservation of declining butterfly populations in Britain and Europe: priorities, problems and successes. Biol J Lin Soc 56:55–72

    Article  Google Scholar 

  • Thomas JA (2005) Monitoring change in the abundance and in distribution of insects using butterflies and other indicator groups. Phi Trans R Soc B 360:339–357

    Article  CAS  Google Scholar 

  • Thomas CD, Abery JCG (1995) Estimating rates of butterfly decline from distribution maps: the effect of scales. Biol Conserv 73:59–65

    Article  Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkens M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Article  PubMed  Google Scholar 

  • Thomas JA, Simcox DJ, Clarke RT (2009) Successful conservation of a threatened Maculinea butterfly. Science 325:80–83

    Article  PubMed  CAS  Google Scholar 

  • Thompson K, Hillier SH, Grime JP, Bossard CC, Band SR (1996) A functional analysis of a limestone grassland community. J Veg Sci 7:371–380

    Article  Google Scholar 

  • Tilman D, May RR, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Tontini L, Castellano S, Bonelli S, Balletto E (2003) Patterns of butterfly diversity above the timberline in the Italian Alps and Appennines. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, Heidelberg

    Google Scholar 

  • Van Swaay CAM, Warren MS (1999) Red data book of European butterflies (Rhopalocera), nature and environment no. 99. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • Van Swaay CAM, Warren MS (2006) Prime butterfly areas of Europe: an initial selection of priority sites for conservation. J Insect Conserv 10:5–11

    Article  Google Scholar 

  • Van Swaay CAM, Cuttelod A, Collins S, Maes D, Munguira ML, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2010) European red list of Butterfly. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Verity R (1940–1953) Le Farfalle diurne d’Italia, vol 5. Marzocco, Firenze

  • Warren MS (1985) The influence of shade on butterfly numbers in woodland rides, with special reference to the wood white Leptidea sinapis. Biol Conserv 33:147–164

    Article  Google Scholar 

  • Warren MS, Thomas JA (1992) Butterfly responses to coppicing. In: Buckley GP (ed) The ecological effects of coppice management. Chapman & Hall, London, pp 249–270

    Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MJ, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  PubMed  CAS  Google Scholar 

  • Weibull A, Östman O (2003) Species composition in agroecosystems: the effect of landscape, habitat, and farm management. Basic Appl Ecol 4:349–361

    Article  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615

    Article  Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biol 13:1873–1887

    Article  Google Scholar 

Download references

Acknowledgments

We wish to warmly thank Prof. Paolo Parenzan (Bari and Palermo) for having put at our disposal his extensive bibliography and in-depth knowledge of Italian entomological literature, as well as our colleagues Sergio Castellano and Valentina La Morgia for their precious help in the statistical analysis. We are very grateful to Nick Isaac who helped to strongly improve this manuscript. This research was funded by the BiodivERsA project CLIMIT (Settele and Kühn 2009; Thomas et al. 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Bonelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonelli, S., Cerrato, C., Loglisci, N. et al. Population extinctions in the Italian diurnal lepidoptera: an analysis of possible causes. J Insect Conserv 15, 879–890 (2011). https://doi.org/10.1007/s10841-011-9387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-011-9387-6

Keywords

Navigation