Skip to main content

Advertisement

Log in

The impact of apiculture on the genetic structure of wild honeybee populations (Apis mellifera) in Sudan

  • Original Paper
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Apiculture often relies on the importation of non-native honeybees (Apis mellifera) and large distance migratory beekeeping. These activities can cause biodiversity conflicts with the conservation of wild endemic honeybee subspecies. We studied the impact of large scale honeybee imports on managed and wild honeybee populations in Sudan, a centre of biodiversity of A. mellifera, using as set of linked microsatellite DNA loci and mitochondrial DNA markers. The mitochondrial DNA analyses showed that all wild honey bees exclusively belonged to African haplotypes. However, we revealed non-native haplotypes in managed colonies on apiaries reflecting unambiguous evidence of imports from European stock. Moreover, we found significantly higher linkage disequilibria for microsatellite markers in wild populations in regions with apiculture compared to wild populations which had no contact to beekeeping. Introgression of imported honeybees was only measurable at the population level in close vicinity to apicultural activities but not in wild populations which represent the vast majority of honeybees in Sudan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akratanakul P, Burgett M (1975) Varroa jacobsoni: a prospective pest of honeybees in many parts of the world. Bee World 56:119–120

    Google Scholar 

  • Clarke KE, Rinderer TE, Franck RP, Quezada-euán JG, Oldroyd BP (2002) The Africanization of honey bees (Apis mellifera L.) of the Yucatan: a study of a massive hybridization event across time. Evolution Int J org Evolution 56:1462–1474

    CAS  Google Scholar 

  • Collet T, Ferreira KM, Arias MC, Soares AEE, Del Lama MA (2006) Genetic structure of Africanized honeybee populations (Apis mellifera L.) from Brazil and Uruguay viewed through mitochondrial DNA COI–COII patterns. Heredity 97:329–335

    Article  CAS  PubMed  Google Scholar 

  • Cornuet JM, Aries F (1980) Number of sex alleles in a sample of honeybee colonies. Apidologie 11:87–93

    Article  Google Scholar 

  • Crane E (1978) The Varroa mite. Bee World 59:164

    Google Scholar 

  • De la Ruá P, Serrano J, Galian J (1998) Mitochondrial variability in the Canary Islands honeybees (Apis mellifera L.). Mol Ecol 7:1543–1547

    Article  PubMed  Google Scholar 

  • El-Niweiri MAA, Omer E, Moritz RFA (2007) Distribution of native and non-native honey bees in Sudan. In: Kirchner WH (ed) The Individual and the Group in the Insect Societies. Proceedings of the 20th IUSSI conference of German speaking Section, Bochum, pp 46

  • El-Niwieri MAA, Moritz RFA (2008) Mitochondrial discrimination of honeybees (Apis mellifera) of Sudan. Apidologie 39:566–573

    Article  Google Scholar 

  • El-Sarrag MSA, Nagi SKA (1989) Studies on some factors affecting mating of queen honeybees in Khartoum area Sudan. Proceedings of the fourth international conference on apiculture in tropical climates, Cairo, pp 20–24

  • Estoup A, Solignac M, Cornuet JM (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc R Soc Lond B 258:1–7

    Article  CAS  Google Scholar 

  • Estoup A, Garnery L, Solignac M, Cornuet JM (1995) Microsatellite variation in honeybee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140:679–695

    CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure II. Linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Fletcher DJC (1978) The African bee, Apis mellifera adansonii, in Africa. Annu Rev Entomol 23:151–171

    Article  Google Scholar 

  • Franck P (1999) Approche génétique des questions évolutives associétes à la sociobiologie et à la phylogéographie de l’abeille domestique (Apis mellifera L.). Ph.D. Thesis, Ecole Nationale Superieure Agronomique, Montpellier

  • Franck P, Garnery L, Solignac M, Cornuet JM (1998) The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution Int J org Evolution 52:1119–1134

    CAS  Google Scholar 

  • Franck P, Garnery L, Celebrano G, Solignac M (2000) Hybrid origins of the Italian honeybees, Apis mellifera ligustica and A. m. sicula. Mol Ecol 9:907–923

    Article  CAS  PubMed  Google Scholar 

  • Franck P, Garnery L, Loiseau A, Oldroyd BP, Hepburn HR, Solignac M, Cornuet JM (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86:420–430

    Article  CAS  PubMed  Google Scholar 

  • Garnery L, Cornuet JM, Solignac M (1992) Evolutionary history of the honeybee Apis mellifera inferred from mitochondrial DNA analysis. Mol Ecol 1:145–154

    Article  CAS  PubMed  Google Scholar 

  • Garnery L, Solignac M, Celebrano G, Cornuet JM (1993) A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia 49:1016–1021

    Article  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Heredity 86:485–486

    Google Scholar 

  • Hall HG, Muralidharan K (1989) Evidence from mitochondrial DNA that African honey bees spread as continuous maternal lineages. Nature 339:211–213

    Article  CAS  PubMed  Google Scholar 

  • Hall HG, Smith DR (1991) Distinguishing African and European honeybee matrilines using amplified mitochondrial DNA. Proc Natl Acad Sci USA 88:4548–4552

    Article  CAS  PubMed  Google Scholar 

  • Hepburn HR, Radloff SE (1998) Honeybees of Africa. Springer, Heidelberg

    Google Scholar 

  • Illgner PM, Nel EL, Robertson MP (1998) Beekeeping and local self-reliance in rural Southern Africa. Geog Rev 88:349–362

    Article  Google Scholar 

  • Jaffé R, Dietemann V, Crewe RM, Moritz RFA (2009) Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (Apis mellifera scutellata). Mol Ecol 18(7):1511–1522

    Article  PubMed  Google Scholar 

  • Johannsemeier MF (2001) Beekeeping in South Africa. Plant protection. Research Institute. Handbook No. 14, 3rd edn. Agricultural Research Council of South Africa, Pretoria

  • Koeniger N, Koeniger G (1991) An evolutionary approach to mating behaviour and drone copulatory organs in Apis. Apidologie 22:581–590

    Article  Google Scholar 

  • Kraus FB, Neumann P, Scharpenberg H, van Praagh J, Moritz RFA (2003) Male mating success of honeybee colonies (Apis mellifera L.). J Evol Biol 16:903–913

    Article  Google Scholar 

  • Kraus FB, Neumann P, van Praagh J, Moritz RFA (2004) Sperm limitation and the evolution of extreme polyandry in honeybees (Apis mellifera L.). Behav Ecol Sociobiol 55:494–501

    Article  Google Scholar 

  • Lattorff HMG, Moritz RFA, Crewe RM, Solignac M (2007) Control of reproductive dominance by the thelytoky gene in honeybees. Biol Lett 3:292–295

    Article  CAS  PubMed  Google Scholar 

  • Lebdigrissa K, Msadda K, Cornuet JM, Fresnaye J (1991) The influence of European honeybees introduced in Tunisia on the Tunisian breed—Apis mellifera intermissa. Landbouwtijdschrift 44:631–636

    Google Scholar 

  • Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67

    CAS  PubMed  Google Scholar 

  • Moritz RFA, Southwick EE (1992) Bees as superorganisms—an evolutionary reality. Springer-Verlag, Heidelberg

    Google Scholar 

  • Moritz RFA, Härtel S, Neumann P (2005) The western honeybee (Apis mellifera L.): an invasive species? Ecoscience 12:289–301

    Article  Google Scholar 

  • Moritz RFA, Kraus FB, Kryger P, Crewe RM (2007) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees. J Insect Conserv 11:391–397

    Article  Google Scholar 

  • Morse RA, Flottum K (1997) Honey bee pests, predators, and diseases, 3rd edn. AI Root, Medina

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Neumann P, Moritz RFA (2002) The Cape honeybee phenomenon: the sympatric evolution of a social parasite in real time? Behav Ecol Sociobiol 52:271–281

    Article  Google Scholar 

  • Neumann P, van Praagh JP, Moritz RFA, Dustmann JH (1999) Testing the reliability of a potential island mating apiary using DNA microsatellites. Apidologie 30:257–276

    Article  CAS  Google Scholar 

  • Oldroyd BP (1999) Coevolution while you wait: Varroa jacobsoni, a new parasite of western honeybees. Tree 14:312–315

    PubMed  Google Scholar 

  • Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Dissertation, University of Dublin

  • Paton DC (1996) Overview of feral and managed honeybees in Australia: distribution, abundance, extent of interactions with native biota, evidence of impacts and future research. Australian Nature Conservation Agency, Canberra

    Google Scholar 

  • Pinto MA, Rubink WL, Coulson RN, Patton JC, Johnston JS (2004) Temporal pattern of Africanization in a feral honey bee population from Texas inferred from mitochondrial DNA. Evolution Int J org Evolution 58:1047–1055

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution Int J org Evolution 49:1280–1283

    Google Scholar 

  • Raymond M, Rousset F (1995b) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Heredity 86:248–249

    Google Scholar 

  • Rinderer TE, Stelzer JA, Oldroyd BP, Buco SM, Rubink WL (1991) Hybridization between European and Africanized honey bees in the neotropical Yucatan Peninsula. Science 253:309–311

    Article  PubMed  Google Scholar 

  • Ruttner F (1969) Biometrische Charakterisierung der österreichischen Carnica-Biene. Z f Bienenforschung 9:469–503

    Google Scholar 

  • Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer-Verlag, Berlin

    Google Scholar 

  • Ruttner F, Ruttner H (1972) Untersuchungen über die Flugaktivität und das Paarungsverhalten der Drohnen. V. Drohnensammelplätze und Paarungsdistanz. Apidologie 3:203–232

    Article  Google Scholar 

  • Schneider SS, Leamy LJ, Lewis LA, Degrandi-Hoffman G (2003) The influence of hybridization between African and European honeybees, Apis mellifera, on asymmetries in wing size and shape. Evolution Int J org Evolution 57:2350–2364

    CAS  Google Scholar 

  • Schneider SS, DeGrandi-Hoffman G, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376

    Article  CAS  Google Scholar 

  • Second G (1975) L’apiculture dans les pays d’afrique du nord, deuxième partie. Bull Tech Apic 2:9–20

    Google Scholar 

  • Shaibi T, Lattorff HMG, Moritz RFA (2008) A microsatellite DNA toolkit for studying population structure in Apis mellifera. Mol Ecol Resour 8:1034–1036

    Article  CAS  Google Scholar 

  • Shaibi T, Fuchs S, Moritz RFA. (2009) Morphological study of Honeybees (Apis mellifera) from Libya. Apidologi 40:97–105

    Article  Google Scholar 

  • Shi YY, He L (2005) SHEsis a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15(2):97–98

    Article  CAS  PubMed  Google Scholar 

  • Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A, Garnery L, Haberl M, Cornuet JM (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera). Mol Ecol Notes 3:307–311

    Article  CAS  Google Scholar 

  • Taylor OR (1985) African bees: potential impact in the United States. Bull Entomol Soc Am 31:14–24

    Google Scholar 

  • Taylor OR (1988) Ecology and economic impact of African and Africanized honey bees. In: Needham GR, Page RE, Delfinado-Baker M, Bowman CE (eds) Africanized honey bees and bee mites. Ellis Horwood, Chichester, pp 29–41

    Google Scholar 

  • Visscher PK, Baptista FC (1996) Initial rapid invasion has slowed in the US. Calif Agric 51:22–25

    Article  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100© as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution Int J org Evolution 38:1358–1370

    Google Scholar 

  • Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honeybee Apis mellifera. Science 314:642–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was granted to MAAEN by the National Centre for Research, Khartoum, Sudan and German Academic Exchange Service (DAAD) fellowship and the Europe Strategic Research Project BEE SHOP (RFAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mogbel A. A. El-Niweiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Niweiri, M.A.A., Moritz, R.F.A. The impact of apiculture on the genetic structure of wild honeybee populations (Apis mellifera) in Sudan. J Insect Conserv 14, 115–124 (2010). https://doi.org/10.1007/s10841-009-9231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-009-9231-4

Keywords

Navigation