Skip to main content
Log in

Comparing the safety of subcutaneous versus transvenous ICDs: a meta-analysis

  • Reviews
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

The use of transvenous implantable cardioverter defibrillators (TV-ICDs) is associated with multiple risks related to the presence of the defibrillator leads within the venous system and right side of the heart, including endocarditis, venous occlusion, tricuspid regurgitation, and potential lead failure. The emergence of subcutaneous ICDs (S-ICDs) may potentially overcome the aforementioned disadvantages. However, evidence validating the safety of S-ICDs relative to TV-ICDs is limited. The present study aimed to synthesize and analyze available data from published studies to comprehensively compare transvenous and subcutaneous ICDs.

Methods

Different databases were searched for full-text publications with a direct comparison of TV- and S-ICDs. Fixed effect models were applied to pooled data, and no study-to-study heterogeneity was detected.

Results

Data from 7 studies totaling 1666 patients were pooled together. Compared to S-ICDs, the risk of suffering device-related complications was higher in patients with TV-ICDs (OR = 1.71; 95% CI: 1.23–2.38). The number of patients with an S-ICD who suffered inappropriate shocks (IS) was not significantly different than patients with a TV-ICD (OR = 0.92; 95% CI: 0.65–1.30). Subgroup analysis indicated that the TV-ICD group had a higher risk of IS due to supraventricular oversensing (OR = 3.29; 95% CI: 1.92–5.63) while T-wave oversensing tending to cause IS in the S-ICD group (OR = 0.09; 95% CI: 0.03–0.23). The risk of device-related infection in the S-ICD group was not any lower than that in the TV-ICD group (OR = 1.57; 95% CI: 0.673.68). The survival rate without any complications during a 1-year follow-up period was similar between the 2 groups (HR = 1.23; 95% CI: 0.811.86), although it was assumed that the trend leaned toward more complications in patients with a TV-ICD.

Conclusion

The present study verified the safety of S-ICDs based on pooled data. Although there were no differences between TV- and S-ICDs in the short term, fewer adverse events were found in patients with S-ICDs during long-term follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Al-Khatib SM, Friedman P, Ellenbogen KA. Defibrillators: selecting the right device for the right patient. Circulation. 2016;134(18):1390–404. https://doi.org/10.1161/circulationaha.116.021889.

    Article  PubMed  Google Scholar 

  2. Reddy RK, Bardy GH. Unipolar pectoral defibrillation systems. Pacing Clin Electrophysiol. 1997;20(2 Pt 2):600–6. https://doi.org/10.1111/j.1540-8159.1997.tb06213.x.

    Article  CAS  PubMed  Google Scholar 

  3. Sunderland N, Kaura A, Murgatroyd F, Dhillon P, Scott PA. Outcomes with single-coil versus dual-coil implantable cardioverter defibrillators: a meta-analysis. Europace. 2018;20(3):e21–e9. https://doi.org/10.1093/europace/euw438.

    Article  PubMed  Google Scholar 

  4. Chang JD, Manning WJ, Ebrille E, Zimetbaum PJ. Tricuspid valve dysfunction following pacemaker or cardioverter-defibrillator implantation. J Am Coll Cardiol. 2017;69(18):2331–41. https://doi.org/10.1016/j.jacc.2017.02.055.

    Article  PubMed  Google Scholar 

  5. Akbarzadeh MA, Mollazadeh R, Sefidbakht S, Shahrzad S, Bahrololoumi Bafruee N. Identification and management of right ventricular perforation using pacemaker and cardioverter-defibrillator leads: a case series and mini review. J Arrhythm. 2017;33(1):1–5. https://doi.org/10.1016/j.joa.2016.05.005.

    Article  PubMed  Google Scholar 

  6. Alonso P, Osca J, Rueda J, Cano O, Pimenta P, Andres A, et al. Conventional and right-sided screening for subcutaneous ICD in a population with congenital heart disease at high risk of sudden cardiac death. Ann Noninvasive Electrocardiol. 2017;22(6). https://doi.org/10.1111/anec.12461.

  7. Bordachar P, Marquié C, Pospiech T, Pasquié JL, Jalal Z, Haissaguerre M, et al. Subcutaneous implantable cardioverter defibrillators in children, young adults and patients with congenital heart disease. Int J Cardiol. 2016;203:251–8. https://doi.org/10.1016/j.ijcard.2015.09.083.

    Article  PubMed  Google Scholar 

  8. Vachharajani TJ, Salman L, Costanzo EJ, Mehandru SK, Patel M, Calderon DM, et al. Subcutaneous defibrillators for dialysis patients. Hemodial Int. 2018;22(1):4–8. https://doi.org/10.1111/hdi.12577.

    Article  PubMed  Google Scholar 

  9. Wazni O, Wilkoff BL. Considerations for cardiac device lead extraction. Nat Rev Cardiol. 2016;13(4):221–9. https://doi.org/10.1038/nrcardio.2015.207.

    Article  PubMed  Google Scholar 

  10. Lewis GF, Gold MR. Safety and efficacy of the subcutaneous implantable defibrillator. J Am Coll Cardiol. 2016;67(4):445–54. https://doi.org/10.1016/j.jacc.2015.11.026.

    Article  PubMed  Google Scholar 

  11. Lewis GF, Gold MR. Clinical experience with subcutaneous implantable cardioverter-defibrillators. Nat Rev Cardiol. 2015;12(7):398–405. https://doi.org/10.1038/nrcardio.2015.56.

    Article  PubMed  Google Scholar 

  12. Burke MC, Gold MR, Knight BP, Barr CS, Theuns D, Boersma LVA, et al. Safety and efficacy of the totally subcutaneous implantable defibrillator: 2-year results from a pooled analysis of the IDE study and EFFORTLESS registry. J Am Coll Cardiol. 2015;65(16):1605–15. https://doi.org/10.1016/j.jacc.2015.02.047.

    Article  PubMed  Google Scholar 

  13. Auricchio A, Hudnall JH, Schloss EJ, Sterns LD, Kurita T, Meijer A, et al. Inappropriate shocks in single-chamber and subcutaneous implantable cardioverter-defibrillators: a systematic review and meta-analysis. Europace. 2017;19(12):1973–80. https://doi.org/10.1093/europace/euw415.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647. https://doi.org/10.1136/bmj.g7647.

    Article  PubMed  Google Scholar 

  15. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16. https://doi.org/10.1186/1745-6215-8-16.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu XL, Tu Q, Faure G, Gallet P, Kohler C, de Carvalho Bittencourt M. Diagnostic and prognostic value of circulating tumor cells in head and neck squamous cell carcinoma: a systematic review and meta-analysis. Sci Rep. 2016;6:20210. https://doi.org/10.1038/srep20210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Honarbakhsh S, Providencia R, Srinivasan N, Ahsan S, Lowe M, Rowland E, et al. A propensity matched case-control study comparing efficacy, safety and costs of the subcutaneous vs. transvenous implantable cardioverter defibrillator. Int J Cardiol. 2017;228:280–5. https://doi.org/10.1016/j.ijcard.2016.11.017.

    Article  CAS  PubMed  Google Scholar 

  18. Mithani AA, Kath H, Hunter K, Andriulli J, Ortman M, Field J, et al. Characteristics and early clinical outcomes of patients undergoing totally subcutaneous vs. transvenous single chamber implantable cardioverter defibrillator placement. Europace. 2018;20(2):308–14. https://doi.org/10.1093/europace/eux026.

    Article  PubMed  Google Scholar 

  19. Pettit SJ, McLean A, Colquhoun I, Connelly D, McLeod K. Clinical experience of subcutaneous and transvenous implantable cardioverter defibrillators in children and teenagers. Pacing Clin Electrophysiol. 2013;36(12):1532–8. https://doi.org/10.1111/pace.12233.

    Article  PubMed  Google Scholar 

  20. Köbe J, Reinke F, Meyer C, Shin DI, Martens E, Kääb S, et al. Implantation and follow-up of totally subcutaneous versus conventional implantable cardioverter-defibrillators: a multicenter case-control study. Heart Rhythm. 2013;10(1):29–36. https://doi.org/10.1016/j.hrthm.2012.09.126.

    Article  PubMed  Google Scholar 

  21. Brouwer TF, Yilmaz D, Lindeboom R, Buiten MS, Olde Nordkamp LR, Schalij MJ, et al. Long-term clinical outcomes of subcutaneous versus transvenous implantable defibrillator therapy. J Am Coll Cardiol. 2016;68(19):2047–55. https://doi.org/10.1016/j.jacc.2016.08.044.

    Article  PubMed  Google Scholar 

  22. Boveda S, Chalbia TE, Jacob S, Combes S, Combes N, Cardin C, et al. Duration of hospital admission, need of on-demand analgesia and other peri-procedural and short-term outcomes in sub-cutaneous vs. transvenous implantable cardioverter-defibrillators. Int J Cardiol. 2018;258:133–7. https://doi.org/10.1016/j.ijcard.2017.11.104.

    Article  PubMed  Google Scholar 

  23. Knops RE, Olde Nordkamp LRA, Delnoy PHM, Boersma LVA, Kuschyk J, El-Chami MF, et al. Subcutaneous or transvenous defibrillator therapy. N Engl J Med. 2020;383(6):526–36. https://doi.org/10.1056/NEJMoa1915932.

    Article  PubMed  Google Scholar 

  24. Friedman PA, Bradley D, Koestler C, Slusser J, Hodge D, Bailey K, et al. A prospective randomized trial of single- or dual-chamber implantable cardioverter-defibrillators to minimize inappropriate shock risk in primary sudden cardiac death prevention. Europace. 2014;16(10):1460–8. https://doi.org/10.1093/europace/euu022.

    Article  PubMed  Google Scholar 

  25. Polyzos KA, Konstantelias AA, Falagas ME. Risk factors for cardiac implantable electronic device infection: a systematic review and meta-analysis. Europace. 2015;17(5):767–77. https://doi.org/10.1093/europace/euv053.

    Article  PubMed  Google Scholar 

  26. Guha A, Maddox WR, Colombo R, Nahman NS Jr, Kintziger KW, Waller JL, et al. Cardiac implantable electronic device infection in patients with end-stage renal disease. Heart Rhythm. 2015;12(12):2395–401. https://doi.org/10.1016/j.hrthm.2015.08.003.

    Article  PubMed  Google Scholar 

  27. Lickfett L, Bitzen A, Arepally A, Nasir K, Wolpert C, Jeong KM, et al. Incidence of venous obstruction following insertion of an implantable cardioverter defibrillator. A study of systematic contrast venography on patients presenting for their first elective ICD generator replacement. Europace. 2004;6(1):25–31. https://doi.org/10.1016/j.eupc.2003.09.001.

    Article  PubMed  Google Scholar 

  28. Haghjoo M, Nikoo MH, Fazelifar AF, Alizadeh A, Emkanjoo Z, Sadr-Ameli MA. Predictors of venous obstruction following pacemaker or implantable cardioverter-defibrillator implantation: a contrast venographic study on 100 patients admitted for generator change, lead revision, or device upgrade. Europace. 2007;9(5):328–32. https://doi.org/10.1093/europace/eum019.

    Article  PubMed  Google Scholar 

  29. Yu Z, Wu Y, Qin S, Wang J, Chen X, Chen R, et al. Comparison of single-coil lead versus dual-coil lead of implantable cardioverter defibrillator on lead-related venous complications in a canine model. J Interv Card Electrophysiol. 2018;52(2):195–201. https://doi.org/10.1007/s10840-018-0312-8.

    Article  PubMed  Google Scholar 

  30. Weiss R, Knight BP, Gold MR, Leon AR, Herre JM, Hood M, et al. Safety and efficacy of a totally subcutaneous implantable-cardioverter defibrillator. Circulation. 2013;128(9):944–53. https://doi.org/10.1161/circulationaha.113.003042.

    Article  PubMed  Google Scholar 

  31. Kutyifa V, Beck C, Brown MW, Cannom D, Daubert J, Estes M, et al. Multicenter automatic defibrillator implantation trial-subcutaneous implantable cardioverter defibrillator (MADIT S-ICD): design and clinical protocol. Am Heart J. 2017;189:158–66. https://doi.org/10.1016/j.ahj.2017.04.014.

    Article  PubMed  Google Scholar 

  32. Olde Nordkamp LR, Knops RE, Bardy GH, Blaauw Y, Boersma LV, Bos JS, et al. Rationale and design of the PRAETORIAN trial: a Prospective, RAndomizEd comparison of subcuTaneOus and tRansvenous ImplANtable cardioverter-defibrillator therapy. Am Heart J. 2012;163(5):753–60.e2. https://doi.org/10.1016/j.ahj.2012.02.012.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HT and LS contributed to the study conception and design. LS, JG, and YH collected the data and performed the data analysis. HT and LS contributed to the interpretation of the data and the completion of figures and tables. All authors contributed to the drafting of the article and final approval of the submitted version.

Corresponding author

Correspondence to Hong Tan.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Figure 1.

Kaplan-Meier curve showing the complication-free survival rates for short-term (A) and long-term follow-up (B), respectively. (PNG 225 kb).

High Resolution Image (TIF 571 kb).

Supplementary Figure 2.

Begg’s test showed a symmetrical distribution of the included publications (p = 0.462), which indicated that there was not a publication bias among the articles included in the present study. (PNG 197 kb).

High Resolution Image (TIF 1316 kb).

Supplementary Table 1

(DOCX 15 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Guo, J., Hao, Y. et al. Comparing the safety of subcutaneous versus transvenous ICDs: a meta-analysis. J Interv Card Electrophysiol 60, 355–363 (2021). https://doi.org/10.1007/s10840-020-00929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-020-00929-1

Keywords

Navigation