Skip to main content
Log in

Incidence and clinical predictors of low defibrillation safety margin at time of implantable defibrillator implantation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Determination of the defibrillation safety margin (DSM) is the most common method of testing device effectiveness at the time of implantation of implantable cardioverter defibrillator (ICD) or cardiac resynchronization therapy defibrillator (CRTD). Low DSM remains a problem in clinical practice.

Objective

The purpose of this study is to ascertain the incidence and clinical predictors of low DSM and the treatment strategies for low DSM in ICD or CRTD recipients.

Methods

Selected ICD or CRTD recipients from January 2006 to May 2008 who underwent DSM test at the time of implantation were included. Low DSM patients were defined as patients who had a DSM within 10 J of the maximum delivered energy of the device. These patients were compared to patients who had DSM > 10 J.

Results

This study included 243 patients. Of these, 13 (5.3%) patients had low DSM, and 230 patients had adequate DSM. Patients with low DSM had a high prevalence of amiodarone use (69% vs 13%, p < 0.01), secondary prevention indications (69% vs 30%, p < 0.01), and a trend toward younger age (51 ± 18 vs 58 ± 15 years, p = 0.08). After adjustment for age and sex, amiodarone use was significantly associated with low DSM. All low DSM patients except one obtained adequate DSM after taking additional steps, including discontinuing amiodarone and starting sotalol, RV lead repositioning, adding a subcutaneous array or shock coil, changing single-coil to dual-coil lead, and upgrading to a high output device.

Conclusion

The incidence of low DSM patients is low with high-energy devices. Amiodarone use is associated with low DSM, and its discontinuation or substitution with sotalol is one of a variety of available options for low DSM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birnie, D., Tung, S., Simpson, C., Crystal, E., Exner, D., Paredes, F. A., et al. (2008). Complications associated with defibrillation threshold testing: the Canadian experience. Heart Rhythm, 5, 387–390.

    Article  PubMed  Google Scholar 

  2. Marchlinski, F. E., Flores, B., Miller, J. M., Gottlieb, C. D., & Hargrove, W. C., 3rd. (1988). Relation of the intraoperative defibrillation threshold to successful postoperative defibrillation with an automatic implantable cardioverter defibrillator. The American Journal of Cardiology, 62, 393–398.

    Article  PubMed  CAS  Google Scholar 

  3. Strickberger, S. A., Daoud, E. G., Davidson, T., Weiss, R., Bogun, F., Knight, B. P., et al. (1997). Probability of successful defibrillation at multiples of the defibrillation energy requirement in patients with an implantable defibrillator. Circulation, 96, 1217–1223.

    PubMed  CAS  Google Scholar 

  4. Neuzner, J., Liebrich, A., Jung, J., Himmrich, E., Pitschner, H. F., Winter, J., et al. (1999). Safety and efficacy of implantable defibrillator therapy with programmed shock energy at twice the augmented step-down defibrillation threshold: results of the prospective, randomized, multicenter low-energy Endotak trial. The American Journal of Cardiology, 83, 34D–39D.

    Article  PubMed  CAS  Google Scholar 

  5. Barold, S. S., Herweg, B., & Curtis, A. B. (2005). The defibrillation safety margin of patients receiving ICDs: a matter of definition. Pacing and Clinical Electrophysiology, 28, 881–882.

    Article  PubMed  Google Scholar 

  6. Gold, M. R., Higgins, S., Klein, R., Gilliam, F. R., Kopelman, H., Hessen, S., et al. (2002). Efficacy and temporal stability of reduced safety margins for ventricular defibrillation: primary results from the Low Energy Safety Study (LESS). Circulation, 105, 2043–2048.

    Article  PubMed  Google Scholar 

  7. Russo, A. M., Sauer, W., Gerstenfeld, E. P., Hsia, H. H., Lin, D., Cooper, J. M., et al. (2005). Defibrillation threshold testing: is it really necessary at the time of implantable cardioverter defibrillator insertion? Heart Rhythm, 2, 456–461.

    Article  PubMed  Google Scholar 

  8. Shukla, H. H., Flaker, G. C., Jayam, V., & Roberts, D. (2003). High defibrillation thresholds in transvenous biphasic implantable defibrillators: clinical predictors and prognostic implications. Pacing and Clinical Electrophysiology, 26, 44–48.

    Article  PubMed  Google Scholar 

  9. Mainigi, S. K., Cooper, J. M., Russo, A. M., Nayak, H. M., Lin, D., Dixit, S., et al. (2006). Elevated defibrillation thresholds in patients undergoing biventricular defibrillator implantation: incidence and predictors. Heart Rhythm, 3, 1010–1016.

    Article  PubMed  Google Scholar 

  10. Theuns, D. A., Szili-Torok, T., & Jordaens, L. J. (2005). Defibrillation efficacy testing: long-term follow-up and mortality. Europace, 7, 509–515.

    Article  PubMed  Google Scholar 

  11. de Lima, C. E., Martinelli Filho, M., Silva, R. T., Tamaki, W. T., de Oliveira, J. C., Martins, D. C., et al. (2008). ICD patients with elevated defibrillation threshold: clinical behavior and therapeutic alternatives. Arquivos Brasileiros de Cardiologia, 90(3), 160–166.

    Article  PubMed  Google Scholar 

  12. Gold, M. R., Khalighi, K., Kavesh, N. G., Daly, B., Peters, R. W., & Shorofsky, S. R. (1997). Clinical predictors of transvenous biphasic defibrillation thresholds. The American Journal of Cardiology, 79(12), 1623–1627.

    Article  PubMed  CAS  Google Scholar 

  13. Pinski, S. L., Vanerio, G., Castle, L. W., Morant, V. A., Simmons, T. W., Trohman, R. G., et al. (1991). Patients with a high defibrillation threshold: clinical characteristics, management, and outcome. American Heart Journal, 122(1 Pt 1), 89–95.

    Article  PubMed  CAS  Google Scholar 

  14. Higgins, S., Mann, D., Calkins, H., Estes, N. A., Strickberger, S. A., Breiter, D., et al. (2005). One conversion of ventricular fibrillation is adequate for implantable cardioverter-defibrillator implant: an analysis from the Low Energy Safety Study (LESS). Heart Rhythm, 2(2), 117–122.

    Article  PubMed  Google Scholar 

  15. Epstein, A. E., Ellenbogen, K. A., Kirk, K. A., Kay, G. N., Dailey, S. M., & Plumb, V. J. (1992). Clinical characteristics and outcome of patients with high defibrillation thresholds: a multicenter study. Circulation, 86, 1206–1216.

    PubMed  CAS  Google Scholar 

  16. Raitt, M. H., Johnson, G., Dolack, G. L., Poole, J. E., Kudenchuk, P. J., & Bardy, G. H. (1995). Clinical predictors of the defibrillation threshold with the unipolar implantable defibrillation system. Journal of the American College of Cardiology, 25, 1576–1583.

    Article  PubMed  CAS  Google Scholar 

  17. Khalighi, K., Daly, B., Leino, E. V., Shorofsky, S. R., Kavesh, N. G., Peters, R. W., et al. (1997). Clinical predictors of transvenous defibrillation energy requirements. The American Journal of Cardiology, 79(2), 150–153.

    Article  PubMed  CAS  Google Scholar 

  18. Fain, E. S., Lee, J. T., & Winkle, R. A. (1987). Effects of acute intravenous and chronic oral amiodarone on defibrillation energy requirements. American Heart Journal, 114(1 Pt 1), 8–17.

    Article  PubMed  CAS  Google Scholar 

  19. Hohnloser, S. H., Dorian, P., Roberts, R., Gent, M., Israel, C. W., Fain, E., et al. (2006). Effect of amiodarone and sotalol on ventricular defibrillation threshold: the optimal pharmacological therapy in cardioverter defibrillator patients (OPTIC) trial. Circulation, 114(2), 104–109.

    Article  PubMed  CAS  Google Scholar 

  20. Kühlkamp, V., Mewis, C., Suchalla, R., Mermi, J., Dörnberger, V., & Seipel, L. (1999). Effect of amiodarone and sotalol on the defibrillation threshold in comparison to patients without antiarrhythmic drug treatment. International Journal of Cardiology, 69(3), 271–279.

    Article  PubMed  Google Scholar 

  21. Huang, S. K., Tan de Guzman, W. L., Chenarides, J. G., Okike, N. O., & Vander Salm, T. J. (1991). Effects of long-term amiodarone therapy on the defibrillation threshold and the rate of shocks of the implantable cardioverter-defibrillator. American Heart Journal, 122(3 Pt 1), 720–727.

    Article  PubMed  CAS  Google Scholar 

  22. Schuger, C., Ellenbogen, K. A., Faddis, M., Knight, B. P., Yong, P., Sample, R., & VENTAK CHF/CONTAK CD Study Investigators. (2006). Defibrillation energy requirements in an ICD population receiving cardiac resynchronization therapy. Journal of Cardiovascular Electrophysiology, 17(3), 247–250.

    Article  PubMed  Google Scholar 

  23. Zima, E., Gergely, M., Soós, P., Gellér, L. A., Nemes, A., Acsády, G., et al. (2006). The effect of induction method on defibrillation threshold and ventricular fibrillation cycle length. Journal of Cardiovascular Electrophysiology, 17(4), 377–381.

    Article  PubMed  Google Scholar 

  24. Huang, J., Skinner, J. L., Rogers, J. M., Smith, W. M., Holman, W. L., & Ideker, R. E. (2002). The effects of acute and chronic amiodarone on activation patterns and defibrillation threshold during ventricular fibrillation in dogs. Journal of the American College of Cardiology, 40(2), 375–383.

    Article  PubMed  CAS  Google Scholar 

  25. Frame, L. H. (1989). The effect of chronic oral and acute intravenous amiodarone administration on ventricular defibrillation threshold using implanted electrodes in dogs. Pacing and Clinical Electrophysiology, 12(2), 339–346.

    Article  PubMed  CAS  Google Scholar 

  26. Arredondo, M. T., Guillen, S. G., & Quinteiro, R. A. (1986). Effect of amiodarone on ventricular fibrillation and defibrillation thresholds in the canine heart under normal and ischemic conditions. European Journal of Pharmacology, 125(1), 23–28.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou, L., Chen, B. P., Kluger, J., Fan, C., & Chow, M. S. (1998). Effects of amiodarone and its active metabolite desethylamiodarone on the ventricular defibrillation threshold. Journal of the American College of Cardiology, 31(7), 1672–1678.

    Article  PubMed  CAS  Google Scholar 

  28. Boriani, G., Biffi, M., Frabetti, L., Maraschi, M., & Branzi, A. (2000). High defibrillation threshold at cardioverter defibrillator implantation under amiodarone treatment: favorable effects of D, L-sotalol. Heart & Lung, 29(6), 412–416.

    Article  CAS  Google Scholar 

  29. Pelosi, F., Jr., Oral, H., Kim, M. H., Sticherling, C., Horwood, L., Knight, B. P., et al. (2000). Effect of chronic amiodarone therapy on defibrillation energy requirements in humans. Journal of Cardiovascular Electrophysiology, 11(7), 736–740.

    Article  PubMed  Google Scholar 

  30. Nielsen, T. D., Hamdan, M. H., Kowal, R. C., Barbera, S. J., Page, R. L., & Joglar, J. A. (2001). Effect of acute amiodarone loading on energy requirements for biphasic ventricular defibrillation. The American Journal of Cardiology, 88(4), 446–448.

    Article  PubMed  CAS  Google Scholar 

  31. Daoud, E. G., Man, K. C., Horwood, L., Morady, F., & Strickberger, S. A. (1997). Relation between amiodarone and desethylamiodarone plasma concentrations and ventricular defibrillation energy requirements. The American Journal of Cardiology, 79(1), 97–100.

    Article  PubMed  CAS  Google Scholar 

  32. Jung, W., Manz, M., Pizzulli, L., Pfeiffer, D., & Lüderitz, B. (1992). Effects of chronic amiodarone therapy on defibrillation threshold. The American Journal of Cardiology, 70(11), 1023–1027.

    Article  PubMed  CAS  Google Scholar 

  33. Ware, D. L., Brooks, M. J., Atkinson, J. B., & Echt, D. S. (1993). Ventricular defibrillation in canines with chronic infarction, and effects of lidocaine and procainamide. Pacing and Clinical Electrophysiology, 16, 337–346.

    Article  PubMed  CAS  Google Scholar 

  34. Echt, D. S., Black, J. N., Barbey, J. T., Coxe, D. R., & Cato, E. (1989). Evaluation of antiarrhythmic drugs on defibrillation energy requirements in dogs: sodium channel block and action potential prolongation. Circulation, 79, 1106–1117.

    Article  PubMed  CAS  Google Scholar 

  35. Simon, R. D., Sturdivant, J. L., Leman, R. B., Wharton, J. M., & Gold, M. R. (2009). The effect of dofetilide on ventricular defibrillation thresholds. Pacing and Clinical Electrophysiology, 32(1), 24–28.

    Article  PubMed  Google Scholar 

  36. Torp-Pedersen, C., Møller, M., Bloch-Thomsen, P. E., Køber, L., Sandøe, E., Egstrup, K., et al. (1999). Dofetilide in patients with congestive heart failure and left ventricular dysfunction. Danish Investigations of Arrhythmia and Mortality on Dofetilide Study Group. The New England Journal of Medicine, 341(12), 857–865.

    Article  PubMed  CAS  Google Scholar 

  37. Dorian, P., Fain, E. S., Davy, J. M., & Winkle, R. A. (1986). Lidocaine causes a reversible, concentration-dependent increase in defibrillation energy requirements. Journal of the American College of Cardiology, 8(2), 327–332.

    Article  PubMed  CAS  Google Scholar 

  38. Dorian, P., Newman, D., Sheahan, R., Tang, A., Green, M., & Mitchell, J. (1996). d-Sotalol decreases defibrillation energy requirements in humans: a novel indication for drug therapy. Journal of Cardiovascular Electrophysiology, 7(10), 952–961.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, M., & Dorian, P. (1989). DL and D sotalol decrease defibrillation energy requirements. Pacing and Clinical Electrophysiology, 12(9), 1522–1529.

    Article  PubMed  CAS  Google Scholar 

  40. Dorian, P., Newman, D., Harris, L., & Downar, E. (1994). Sotalol in patients with implanted automatic defibrillators: effects on defibrillation and comparison with amiodarone. Canadian Journal of Cardiology, 10(2), 193–200.

    PubMed  CAS  Google Scholar 

  41. Fotuhi, P. C., Kenknight, B. H., Melnick, S. B., Smith, W. M., Baumann, G. F., & Ideker, R. E. (1997). Effect of a passive endocardial electrode on defibrillation efficacy of a nonthoracotomy lead system. Journal of the American College of Cardiology, 29(4), 825–830.

    Article  PubMed  CAS  Google Scholar 

  42. Usui, M., Walcott, G. P., KenKnight, B. H., Walker, R. G., Rollins, D. L., Smith, W. M., et al. (1995). Influence of malpositioned transvenous leads on defibrillation efficacy with and without a subcutaneous array electrode. Pacing and Clinical Electrophysiology, 18(11), 2008–2016.

    Article  PubMed  CAS  Google Scholar 

  43. Winter, J., Zimmermann, N., Lidolt, H., Dees, H., Perings, C., Vester, E. G., et al. (2000). Optimal method to achieve consistently low defibrillation energy requirements. The American Journal of Cardiology, 86(9A), 71K–75K.

    Article  PubMed  CAS  Google Scholar 

  44. Rashba, E. J., Bonner, M., Wilson, J., Shorofsky, S. R., Peters, R. W., & Gold, M. R. (2003). Distal right ventricular coil position reduces defibrillation thresholds. Journal of Cardiovascular Electrophysiology, 14(10), 1036–1040.

    Article  PubMed  Google Scholar 

  45. Winter, J., Heil, J. E., Schumann, C., Lin, Y., Schannwell, C. M., Michel, U., et al. (1998). Effect of implantable cardioverter/defibrillator lead placement in the right ventricle on defibrillation energy requirements. A combined experimental and clinical study. European Journal of Cardio-Thoracic Surgery, 14(4), 419–425.

    Article  PubMed  CAS  Google Scholar 

  46. Roberts, P. R., Allen, S., Betts, T., Urban, J. F., Euler, D. E., Crick, S., et al. (2000). A multifilamented electrode in the middle cardiac vein reduces energy requirements for defibrillation in the pig. Heart, 84(4), 425–430.

    Article  PubMed  CAS  Google Scholar 

  47. Roberts, P. R., Urban, J. F., Euler, D. E., Kallok, M. J., & Morgan, J. M. (1999). The middle cardiac vein—a novel pathway to reduce the defibrillation threshold. Journal of Interventional Cardiac Electrophysiology, 3(1), 55–60.

    Article  PubMed  CAS  Google Scholar 

  48. Roberts, P. R., Urban, J. F., Betts, T., Allen, S., Dietz, A., Euler, D. E., et al. (2000). Reduction in defibrillation threshold using an auxiliary shock delivered in the middle cardiac vein. Pacing and Clinical Electrophysiology, 23(8), 1278–1282.

    Article  PubMed  CAS  Google Scholar 

  49. Paisey, J. R., Yue, A. M., Bessoule, F., Roberts, P. R., & Morgan, J. M. (2006). Passive electrode effect reduces defibrillation threshold in bi-filament middle cardiac vein defibrillation. Europace, 8(2), 113–117.

    Article  PubMed  Google Scholar 

  50. Roberts, P. R., Paisey, J. R., Betts, T. R., Allen, S., Whitman, T., Bonner, M., et al. (2003). Comparison of coronary venous defibrillation with conventional transvenous internal defibrillation in man. Journal of Interventional Cardiac Electrophysiology, 8(1), 65–70.

    Article  PubMed  CAS  Google Scholar 

  51. Kuhlkamp, V., Dornberger, V., Khalighi, K., Mewis, C., Suchalla, R., Ziemer, G., et al. (1998). Effect of a single element subcutaneous array electrode added to a transvenous electrode configuration on the defibrillation field and the defibrillation threshold. Pacing and Clinical Electrophysiology, 21(12), 2596–2605.

    Article  PubMed  CAS  Google Scholar 

  52. Gradaus, R., Block, M., Seidl, K., Brunn, J., Isgro, F., Hammel, D., et al. (2001). Defibrillation efficacy comparing a subcutaneous array electrode versus an “active can” implantable cardioverter defibrillator and a subcutaneous array electrode in addition to an “active can” implantable cardioverter defibrillator: results from active can versus array trials I and II. Journal of Cardiovascular Electrophysiology, 12(8), 921–927.

    Article  PubMed  CAS  Google Scholar 

  53. Jordaens, L., Vertongen, P., & van Belleghem, Y. (1993). A subcutaneous lead array for implantable cardioverter defibrillators. Pacing and Clinical Electrophysiology, 16(7 Pt 1), 1429–1433.

    Article  PubMed  CAS  Google Scholar 

  54. Higgins, S. L., Alexander, D. C., Kuypers, C. J., & Brewster, S. A. (1995). The subcutaneous array: a new lead adjunct for the transvenous ICD to lower defibrillation thresholds. Pacing and Clinical Electrophysiology, 18(8), 1540–1548.

    Article  PubMed  CAS  Google Scholar 

  55. Gold, M. R., Olsovsky, M. R., Pelini, M. A., Peters, R. W., & Shorofsky, S. R. (1998). Comparison of single- and dual-coil active pectoral defibrillation lead systems. Journal of the American College of Cardiology, 31(6), 1391–1394.

    Article  PubMed  CAS  Google Scholar 

  56. Rashba, E. J., Olsovsky, M. R., Shorofsky, S. R., Kirk, M. M., Peters, R. W., & Gold, M. R. (2001). Temporal decline in defibrillation thresholds with an active pectoral lead system. Journal of the American College of Cardiology, 38(4), 1150–1155.

    Article  PubMed  CAS  Google Scholar 

  57. Mainigi, S. K., & Callans, D. J. (2006). How to manage the patient with a high defibrillation threshold. Heart Rhythm, 3(4), 492–495.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Paul J Wang is consultant for Medtronic, Inc. No other conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z., Turakhia, M., Lo, R. et al. Incidence and clinical predictors of low defibrillation safety margin at time of implantable defibrillator implantation. J Interv Card Electrophysiol 34, 93–100 (2012). https://doi.org/10.1007/s10840-011-9648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-011-9648-z

Keywords

Navigation