Skip to main content
Log in

Clinical value of fibrillatory wave amplitude on surface ECG in patients with persistent atrial fibrillation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

We postulated that amplitude of fibrillatory (F)-wave in patients with persistent AF would correlate with clinical characteristics and outcome in patients undergoing catheter ablation for AF.

Method

Maximal and mean amplitude of F-waves were measured in V1 and lead II in 90 patients prior to ablation for persistent AF. F-wave amplitudes were correlated to clinical, echocardiographic variables, and outcome.

Results

F-wave ≥ 0.1 mV in lead II and V1was correlated with younger age and shorter AF history, and in lead II only was correlated with a smaller left atrium. Higher F-wave amplitude at baseline predicted AF termination during ablation. Maximal amplitude of ≥ 0.07 mV predicted AF termination by ablation with 82%/79% sensitivity and 68%/73% specificity in V1/lead II respectively. An association between F-wave amplitude and AF recurrence was observed. Forty-three percent of patients with mean f wave amplitude <0.05 in lead V1 had AF recurrence compared to 12% of those with F-wave ≥ 0.05 (p = 0.004).

Conclusion

Longer AF duration, older age and larger LA size are associated with fine AF amplitude. High F-wave amplitude predicts procedural termination of arrhyhmia in patients with persistent AF and freedom from AF upon follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AF:

Atrial Fibrillation

AT:

Atrial Tachycardia

DF:

Dominant Frequency

F-wave:

Fibrillatory wave

LA:

Left atrium

LAA:

Left atrial appendage

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

ROC:

Receiver operator correlations

References

  1. Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., et al. (2006). ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation-executive summary: a report of the American College of Cardiology/American Heart Association Task Force and European Society of Cardiology Committee for Practice guideline. Journal of the American College of Cardiology, 48, 854–906.

    Article  PubMed  Google Scholar 

  2. Nademanee, K., Schwab, M. C., Kosar, E. M., Karwecki, M., Moran, M. D., Visessook, N., et al. (2008). Clinical Outcomes of Catheter Substrate Ablation for High-Risk Patients with Atrial Fibrillation. Journal of the American College of Cardiology, 51, 843–849.

    Article  PubMed  Google Scholar 

  3. Sauer, W. H., McKernan, M. L., Lin, D., Gerstenfeld, E. P., Callans, D. J., & Marchlinski, F. E. (2006). Clinical predictors and outcomes associated with acute return of pulmonary vein conduction during pulmonary vein isolation for treatment of atrial fibrillation. Heart Rhythm, 3, 1024–1028.

    Article  PubMed  Google Scholar 

  4. Jongnarangsin, K., Chugh, A., Good, E., Mukerji, S., Dey, S., Crawford, T., et al. (2008). Body mass index, obstructive sleep apnea, and outcomes of catheter ablation of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 19, 668–672.

    Article  PubMed  Google Scholar 

  5. Xi, Q., Sahakian, A. V., Ng, J., & Swiryn, S. (2004). Atrial Fibrillatory Wave Characteristics on Surface Electrogram: ECG to ECG Repeatability over Twenty-Four Hours in Clinically Stable Patients. Journal of Cardiovascular Electrophysiology, 15, 911–917.

    PubMed  Google Scholar 

  6. Yamamoto, S., Suwa, M., Ito, T., Murakami, S., Umeda, T., Tokaji, Y., et al. (2005). Comparison of Frequency of Thromboembolic Events and Echocardographic Findings in Patients with Chronic Nonvalvular Atrial Fibrillation and Coarse versus Fine Electrocardiographic Fibrillatory Waves. The American Journal of Cardiology, 96, 408–411.

    Article  PubMed  Google Scholar 

  7. Nakagawa, K., Hirai, T., Shinokawa, N., Uchiyama, Y., Kameyama, T., Takashima, S., et al. (2001). Relation of Fibrillatory Wave Amplitude With Hemostatic Abnormality and Left Atrial Appendage Dysfunction in Patients with Chronic Nonrheumatic Atrial Fibrillation. Japanese Circulation Journal, 65, 375–380.

    Article  PubMed  CAS  Google Scholar 

  8. Bollmann, A., Binias, K.-H., Grothues, F., Sonne, K., Esperer, H.-D., Nikutta, P., et al. (2001). Left Atrial Appendage Flow in Nonrheumatic Atrial Fibrillation: Relationship with Pulmonary Venous Flow and ECG Fibrillatory Wave Amplitude. Chest, 119, 485–492.

    Article  PubMed  CAS  Google Scholar 

  9. Li, Y. H., Hwang, J. J., Tseng, Y. Z., Kuan, P., & Lien, W. P. (1995). Clinical significance of fibrillatory wave amplitude. A clue to left atrial appendage function in nonrheumatic atrial fibrillation. Chest, 108, 359–363.

    Article  PubMed  CAS  Google Scholar 

  10. Mutlu, B., Karabulut, M., Eroglu, E., Tigen, K., Bayrak, F., Fotbolcu, H., et al. (2003). Fibrillatory wave amplitude as a marker of left atrial and left atrial appendage function, and a predictor of thromboembolic risk in patients with rheumatic mitral stenosis. International Journal of Cardiology, 91, 179–186.

    Article  PubMed  Google Scholar 

  11. Morganroth, J., Horowitz, L. N., Josephson, M. E., & Kastor, J. A. (1979). Relationship of atrial fibrillatory wave amplitude to left atrial size and etiology of heart disease. An old generalization re-examined. American Heart Journal, 97, 184–186.

    CAS  Google Scholar 

  12. Blackshear, J. L., Safford, R. E., & Pearce, L. A. (1996). F-amplitude, left atrial appendage velocity, and thromboembolic risk in nonrheumatic atrial fibrillation. Stroke prevention in atrial fibrillation investigators. Clinical Cardiology, 19, 309–313.

    CAS  Google Scholar 

  13. Saksena, S., Giorgberidze, I., Mehra, R., Hill, M., Prakash, A., Krol, R. B., et al. (1999). Electrophysiology and endocardial mapping of induced atrial fibrillation in patients with spontaneous atrial fibrillation. American Journal of Cardiology, 15;83(2), 187–193.

    Article  Google Scholar 

  14. Saksena, S., Skadsberg, N. D., Rao, H. B., & Filipecki, A. (2005). Biatrial and three-dimensional mapping of spontaneous atrial arrhythmias in patients with refractory atrial fibrillation. Journal of Cardiovascular Electrophysiology, 16(5), 494–504.

    Article  PubMed  Google Scholar 

  15. Saksena, S., Prakash, A., Krol, R. B., & Shankar, A. (1999). Regional endocardial mapping of spontaneous and induced atrial fibrillation in patients with heart disease and refractory atrial fibrillation. American Journal of Cardiology, 15;84(8), 880–889.

    Article  Google Scholar 

  16. Peter, R. H., Morris, L. J,. Jr, & McIntosh, H. D. (1966). Relationship of Fibrillatory Waves and P Waves in the Electrocardiogram. Circulation, 33, 599–606.

    PubMed  CAS  Google Scholar 

  17. Eick, O. J., Gerritse, B., & Schumacher, B. (2000). Popping phenomena in temperature-controlled radiofrequency ablation: when and why do they occur? Pacing and Clinical Electrophysiology, 23, 253–258.

    Article  PubMed  CAS  Google Scholar 

  18. Haïssaguerre, M., Shah, D. C., Jaïs, P., Hocini, M., Yamane, T., Deisenhofer, I., et al. (2000). Electrophysiological Breakthroughs from the left atrium to the pulmonary veins. Circulation, 102, 2463–2465.

    PubMed  Google Scholar 

  19. Hocini, M., Sanders, P., Jaïs, P., Hsu, L.-F., Takahashi, Y., Rotter, M., et al. (2004). Techniques for Curative Treatment of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15, 1467–1471.

    Article  PubMed  Google Scholar 

  20. Jaïs, P., Hocini, M., Hsu, L.-F., Sanders, P., Scavee, C., Weerasooriya, R., et al. (2004). Technique and Results of Linear Ablation at the Mitral Isthmus. Circulation, 110, 2996–3002.

    Article  PubMed  Google Scholar 

  21. Hocini, M., Jaïs, P., Sanders, P., Takahashi, Y., Rotter, M., Rostock, T., et al. (2005). Techniques, Evaluation and Consequences of Linear Block at the Left Atrial Roof in Paroxysmal Atrial Fibrillation: A Prospective Randomized Study. Circulation, 112, 3688–3696.

    Article  PubMed  Google Scholar 

  22. Shah, D., Haïssaguerre, M., Takahashi, A., Jaïs, P., Hocini, M., & Clémenty, J. (2000). Differential Pacing fir Distinguishing Block from Persistent Conduction Through and Ablation Line. Circulation, 102, 1517–1522.

    PubMed  CAS  Google Scholar 

  23. Chen, S. A., Chiang, C. E., Yang, C. J., Cheng, C. C., Wu, T. J., Wang, S. P., et al. (1994). Sustained atrial tachycardia in adult patient. Electrophysiological characteristics, pharmacological response, possible mechanisms, and effects of radiofrequency ablation. Circulation, 90, 1262–1278.

    PubMed  CAS  Google Scholar 

  24. Sanders, P., Hocini, M., Jaïs, P., Hsu, L., Takahashi, Y., Rotter, M., et al. (2005). Characterization of Focal Atrial Tachycardia Using High-Density Mapping. Journal of the American College of Cardiology, 46, 2088–2099.

    Article  PubMed  Google Scholar 

  25. Prakash, A., Saksena, S., Krol, R. B., & Philip, G. (2001). Right and left atrial activation during external direct-current cardioversion shocks delivered for termination of atrial fibrillation in humans. The American Journal of Cardiology, 87(9), 1080–1088.

    Article  PubMed  CAS  Google Scholar 

  26. Roithinger, F. X., SippensGroenewegen, A., Karch, M. R., Steiner, P. R., Ellis, W. S., & Lesh, M. D. (1998). Organized activation during atrial fibrillation in man: endocardial and electrocardiographic manifestations. Journal of Cardiovascular Electrophysiology, 9(5), 451–461.

    Article  PubMed  CAS  Google Scholar 

  27. Hsu, N. W., Lin, Y. J., Tai, C. T., Kao, T., Chang, S. L., Wongcharoen, W., et al. (2008). Frequency analysis of the fibrillatory activity from surface ECG lead V1 and intracardiac recordings: implication for mapping of AF. Europace, 10(4), 438–443.

    Article  PubMed  Google Scholar 

  28. Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., et al. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. The New England Journal of Medicine, 339(10), 659–666.

    Article  PubMed  Google Scholar 

  29. Mark O’Neill Kang Teng Lim. (2007). Pierre Jaïs, Seiichiro Matsuo, Sebastien Knecht, Leonardo Arantes, Yoshihide Takahashi, Anders Jonsson, S Kodali, Frederic Sacher, Jacques Clémenty, Mélèze Hocini, Nicolas Derval, Georges Klein, Michel Haïssaguerre Chronic AF termination by catheter ablation is associated with a better clinical outcome. Heart Rhythm, S66, 4. Abstract.

Download references

Disclosures

Sébastien Knecht is supported by the Belgian Foundation for Cardiac Surgery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Nault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nault, I., Lellouche, N., Matsuo, S. et al. Clinical value of fibrillatory wave amplitude on surface ECG in patients with persistent atrial fibrillation. J Interv Card Electrophysiol 26, 11–19 (2009). https://doi.org/10.1007/s10840-009-9398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-009-9398-3

Keywords

Navigation