Skip to main content
Log in

First-degree atrioventricular block

Clinical manifestations, indications for pacing, pacemaker management & consequences during cardiac resynchronization

  • REVIEW
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Marked first-degree AV block (PR≥0.30 s) can produce a clinical condition similar to that of the pacemaker syndrome. Clinical evaluation often requires a treadmill stress test because patients are more likely to become symptomatic with mild or moderate exercise when the PR interval cannot adapt appropriately. Uncontrolled studies have shown that many such symptomatic patients with normal left ventricular (LV) function improve with conventional dual chamber pacing (Class IIa indication). In contrast, marked first-degree AV block with LV systolic dysfunction and heart failure is still a Class IIb indication, a recommendation that is now questionable because a conventional DDD(R) pacemaker would be committed to right ventricular pacing (and its attendant risks) virtually 100% of the time. It would seem prudent at this juncture to consider a biventricular DDD device in this situation. Patients with suboptimally programmed pacemakers may develop functional atrial undersensing because the P wave tends to migrate easily into the postventricular atrial refractory period (PVARP). Retrograde vetriculoatrial conduction block is uncommon in marked first-degree AV block so a relatively short PVARP can often be used at rest with little risk of endless loop tachycardia. The usefulness of a short PVARP may be negated by special PVARP functions in some pulse generators designed to time out a long PVARP at rest and a gradually shorter one with activity. First-degree AV block during cardiac resynchronization therapy (CRT) predisposes to loss of ventricular resynchronization during biventricular pacing because it favors the initiation of electrical “desynchronization” especially in association with a relatively fast atrial rate and a relatively slow programmed upper rate. Patients with first-degree AV block have a poorer outcome with CRT than patients with a normal PR interval, a response that may involve several mechanisms. (1) The long PR interval may be a marker of more advanced heart disease. (2) Patients with first-degree AV block may experience more episodes of undetected “electrical desynchronization”. (3) “Concealed resynchronization” whereupon ventricular activation in patients with a normal PR interval may result from fusion of electrical wavefronts coming from the right bundle branch and the impulse from the LV electrode. The resultant hemodynamic response may be superior because the detrimental effects of right ventricular stimulation (required in the setting of a longer PR interval) are avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chirife, R., Ortega, D. F., & Salazar, A. I. (1990). “Pacemaker syndrome” without a pacemaker. Deleterious effects of first-degree AV block. RBM, 12, 22. (Abstract)

    Google Scholar 

  2. Zornosa, J. P., Crossley, G. H., Haisty, W. K. Jr, Matista, J. A., Leepard, L., & Fitzgerald, D. M. (1992). Pseudopacemaker syndrome: A complication of radiofrequency ablation of the AV junction. Pacing and Clinical Electrophysiology, 15, 590. (abstract)

    Google Scholar 

  3. Kim, Y. H., O’Nunain, S., Trouton, T., Sosa-Suarez, G., Levine, R. A., Garan, H., et al. (1993). Pseudo-pacemaker syndrome following inadvertent fast pathway ablation for atrioventricular nodal reentrant tachycardia. Journal of Cardiovascular Electrophysiology, 4, 178–182.

    PubMed  Google Scholar 

  4. Kuniyashi, R., Sosa, E., Scanavacca, M., Martinelli, M., Megalhaes, L., Hachul, D., et al. (1994). Pseudo-sindrome de marcapasso. Arquivos Brasileiros de Cardiologia, 62, 111–115.

    Google Scholar 

  5. Mabo, P., Cazeau, S., Forrer, A., Varin, C., De Place, C. Paillard, F., et al. (1992). Isolated long PR interval as only indication of permanent DDD pacing. Journal of the American College of Cardiology, 19, 66A. (abstract)

    Google Scholar 

  6. Mabo, P., Varin, C., Vauthier, M., et al. (1992). Deleterious hemodynamic consequences of isolated long PR intervals: correction by DDD pacing. European Heart Journal, 13, 225. (Abstract Suppl)

    Google Scholar 

  7. Barold, S. S. (1996). Indications for permanent pacing in first-degree block. Class I, II, or III? Pacing and Clinical Electrophysiology, 19, 747–751.

    Article  PubMed  CAS  Google Scholar 

  8. Gregoratos, G., Abrams, J., Epstein, A. E., Freedman, R. A., Hayes, D. L., Hlatky, M. A., et al. (2002). ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: Summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines). Journal of Cardiovascular Electrophysiology, 13, 1183–1199.

    Article  PubMed  Google Scholar 

  9. Schnittger, I., Appleton, C. P., Hatle, L. K., & Popp, R. L. (1988). Diastolic mitral and tricuspid regurgitation by Doppler echocardiography in patients with atrioventricular block: New insight into the mechanism of atrioventricular valve closure. Journal of the American College of Cardiology, 11, 83–88.

    PubMed  CAS  Google Scholar 

  10. Appleton, C. P., Basnight, M. A., & Gonzalez, M. S. (1991). Diastolic mitral regurgitation with atrioventricular conduction abnormalities: Relation of mitral flow velocity to transmitral pressure gradients in conscious dogs. Journal of the American College of Cardiology, 18, 843–849.

    PubMed  CAS  Google Scholar 

  11. Panidis, I. P., Ross, J., Munley, B., Nestico, P., & Mintz, G. S. (1986). Diastolic mitral regurgitation in patients with atrioventricular conduction abnormalities: A common finding by Doppler echocardiography. Journal of the American College of Cardiology, 7, 768–774.

    Article  PubMed  CAS  Google Scholar 

  12. Ishikawa, T., Sumica, S., Kimura, K., Kuji, N., Nakayama, R., Nagura, T., et al. (1994). Critical PQ interval for the appearance of diastolic mitral regurgitation and optimal PQ interval in patients implanted with DDD pacemakers. Pacing and Clinical Electrophysiology, 17, 1989–1994.

    Article  PubMed  CAS  Google Scholar 

  13. Nishimura, R. A., Hayes, D. L., Holmes, D. R. Jr, & Tajik, A. J. (1995). Mechanism of hemodynamic improvement by dual-chamber pacing for severe left ventricular dysfunction; an acute doppler and catheterization hemodynamic study. Journal of the American College of Cardiology, 25, 281–288.

    Article  PubMed  CAS  Google Scholar 

  14. Rutishauser, W., Wirz, P., Gander, M., & Luthy, E. (1966). Atriogenic diastolic reflux in patients with atrioventricular block. Circulation, 34, 807–817.

    PubMed  CAS  Google Scholar 

  15. den Dulk, K., Lindemans, F. W., Brugada, P., Smeets, J. L., & Wellens, H. J. (1988). Pacemaker syndrome with AAI rate variable pacing: Importance of atrioventricular conduction properties, medication, and pacemaker programmability. Pacing and Clinical Electrophysiology, 11, 1226–1233.

    Article  Google Scholar 

  16. Sweeney, M. O., Ellenbogen, K. A., Casavant, D., Betzold, R., Sheldon, T., Tang, F., et al. (2005). Multicenter, prospective, randomized safety and efficacy study of a new atrial-based managed ventricular pacing mode (MVP) in dual chamber ICDs. Journal of Cardiovascular Electrophysiology, 16, 811–817.

    Article  PubMed  Google Scholar 

  17. Ellenbogen, K. A., Gilligan, D. M., Wood, M. A., Moprillo, C., & Barold, S. S. (1997). The pacemaker syndrome. A matter of definition. American Journal of Cardiology, 79, 1226–1229.

    Article  PubMed  CAS  Google Scholar 

  18. Kashani, A., Mehdirad, A., Fredman, C., Biermann, K., & Barold, S. S. (2003). A case of pacemaker and pacemaker-like syndrome. Journal of Interventional Cardiac Electrophysiology, 9, 361–364.

    Article  PubMed  Google Scholar 

  19. Daubert, J. C., Pavin, D., Jauvert, G., & Mabo, P. (2004). Intra-and interatrial conduction delay: Implications for cardiac pacing. Pacing and Clinical Electrophysiology, 27, 507–525.

    Article  PubMed  Google Scholar 

  20. Leclercq, C., Gras, D., Le Helloco, A., Nicol, L., Mabo, P., & Daubert, C. (1995). Hemodynamic importance of preserving the normal sequence of ventricular activation in permanent cardiac pacing. American Heart Journal, 129, 1133–1141.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenqvist, M., Bergfeldt, L., Haga, Y., Ryden, J., Ryden, L., & Owall, A. (1996). The effect of ventricular activation sequence on cardiac performance during pacing. Pacing and Clinical Electrophysiology, 19, 1279–1286.

    Article  PubMed  CAS  Google Scholar 

  22. Prinzen, F. W., Van Oosterhout, M. F., Vanagt, W. Y., Storm, C., & Reneman, R. S. (1998). Optimization of ventricular function by improving the activation sequence during ventricular pacing. Pacing and Clinical Electrophysiology, 21, 2256–2260.

    Article  PubMed  CAS  Google Scholar 

  23. Mabo, P., Pouillot, C., Kermarrec, A., Lelong, B., Lebreton, H., & Daubert, C. (1991). Lack of physiological adaptation of the atrioventricular interval to heart rate in patients chronically paced in the AAIR mode. Pacing and Clinical Electrophysiology, 14, 2133–2142.

    Article  PubMed  CAS  Google Scholar 

  24. Jaïs, P., Barold, S. S., Shah, D. C., Takahashi, A., Hocini, M., Haïssaguerre, M., et al. (1999). Pacemaker syndrome induced by the mode switching algorithm of a DDDR pacemaker. Pacing and Clinical Electrophysiology, 22, 682–685.

    Article  PubMed  Google Scholar 

  25. Iliev, I. I., Yamachika, S., Muta, K., Hayano, M., Ishimatsu, T., Nakao, K., et al. (2000). Preserving normal ventricular activation versus atrioventricular delay optimization during pacing: The role of intrinsic atrioventricular conduction and pacing rate. Pacing and Clinical Electrophysiology, 23, 74–80.

    Article  PubMed  CAS  Google Scholar 

  26. Barold, S. S., & Stroobandt, R. X. (2006). Harmful effects of long-term right ventricular pacing. Acta Cardiologica, 61, 103–110.

    Article  PubMed  Google Scholar 

  27. Peters, R. W., & Gold, M. R. (2000). Pacing for patients with congestive heart failure and dilated cardiomyopathy. Cardiovascular Clinics, 18, 55–66.

    Article  CAS  Google Scholar 

  28. Lupi, G., Sassone, B., Badano, L., Peraldo, C., Gaddi, O., Sitges, M., et al. (2006). Effects of right ventricular pacing on intra-left ventricular electromechanical activation in patients with native narrow QRS. American Journal of Cardiology, 98, 219–222.

    Article  PubMed  Google Scholar 

  29. Tops, L. F., Schalij, M. J., Holman, E. R., van Erven, L., van der Wall, E. E., & Bax, J. J. (2006). Right ventricular pacing can induce ventricular dyssynchrony in patients with atrial fibrillation after atrioventricular node ablation. Journal of the American College of Cardiology, 48, 1642–1648.

    Article  PubMed  Google Scholar 

  30. Sweeney, M. O., & Hellkamp, A. S. (2006). Heart failure during cardiac pacing. Circulation, 113, 2082–2088.

    Article  PubMed  Google Scholar 

  31. Tse, H. F., & Lau, C. P. (2006). Selection of permanent ventricular pacing site: How far should we go? Journal of the American College of Cardiology, 48, 1649–1651.

    Article  PubMed  Google Scholar 

  32. Barold, S. S., & Lau, C. P. (2006). Primary prevention of heart failure in cardiac pacing. Pacing and Clinical Electrophysiology, 29, 217–219.

    Article  PubMed  Google Scholar 

  33. Bode, F., Wiegand, U., Katus, H. A., & Potratz, J. (1999). Pacemaker inhibition due to prolonged native AV interval in dual-chamber devices. Pacing and Clinical Electrophysiology, 22, 1425–1431.

    Article  PubMed  CAS  Google Scholar 

  34. Wilson, J. H., & Lattner, S. (1989). Undersensing of P waves in the presence of adequate P wave due to automatic postventricular atrial refractory period extension. Pacing and Clinical Electrophysiology, 10, 1729–1732.

    Article  Google Scholar 

  35. Greenspon, A. J., & Volasin, K. J. (1987). “Pseudo” loss of atrial sensing by a DDD pacemaker. Pacing and Clinical Electrophysiology, 10, 943–948.

    Article  PubMed  CAS  Google Scholar 

  36. van Gelder, B. M., van Mechelen, R., den Dulk, K., & El Gamal, M. I. (1992). Apparent P wave undersensing in a DDD pacemaker post exercise. Pacing and Clinical Electrophysiology, 15, 1651–1656.

    Article  PubMed  Google Scholar 

  37. Dodinot, B., Beurrier, D., Simon, J. P., & Sadoul, N. (1993). “Functional” loss of atrial sensing causing sustained first to high-degree AV block in patients with dual-chamber pacemakers (abstract). Pacing and Clinical Electrophysiology, 16, 1189.

    Article  Google Scholar 

  38. Barold, S. S. (2000). Timing cycles and operational characteristics of pacemakers. In K. Ellenbogen, N. Kay, & B. Wilkoff (Eds.), Clinical cardiac pacing and defibrillation (pp. 727–825), (2nd ed.). Philadelphia PA: W.B. Saunders.

    Google Scholar 

  39. Ando’, G., & Versaci, F. (2005). Ventriculo-atrial gradient due to first degree atrio-ventricular block: A case report. BMC Cardiovascular Disorders, 5, 23.

    Article  PubMed  Google Scholar 

  40. Lau, E. W., Green, M. S., Birnie, D., Lemery, R., & Tang, A. S. (2004). Atrial tracking paradox: Is the dual chamber pacemaker working properly? Pacing and Clinical Electrophysiology, 27, 1148–1150.

    Article  PubMed  Google Scholar 

  41. Collins, R. F., Haugh, C., Casavant, D., Sheth, N., Brown, L., & Hook, B. (2002). Rate dependent far-field R wave sensing in an atrial tachyarrhythmia therapy device. Pacing and Clinical Electrophysiology, 25, 112–114.

    Article  PubMed  Google Scholar 

  42. Barold, S. S. (1999). Sustained inhibition of a DDD pacemaker at rates below the programmed lower rate during automatic PVARP extension. Pacing and Clinical Electrophysiology, 22, 521–524.

    Article  PubMed  CAS  Google Scholar 

  43. Wiegand, U. K., Bode, F., Schneider, R., Brandes, A., Haase, H., Katus, H. A., et al. (1999). Diagnosis of atrial undersensing in dual chamber pacemakers: Impact of autodiagnostic features. Pacing and Clinical Electrophysiology, 22, 894–902.

    Article  PubMed  CAS  Google Scholar 

  44. Bohm, A., Pinter, A., Dekany, M., & Preda, I. (2000). Ventriculoatrial cross-talk dependent pacemaker syndrome. Pacing and Clinical Electrophysiology, 23, 1062–1063.

    Article  PubMed  CAS  Google Scholar 

  45. Pitney, M., & Davis, M. (1991). Catheter ablation of ventriculoatrial conduction in the treatment of pacemaker mediated tachycardia. Pacing and Clinical Electrophysiology, 14, 1013–1017.

    Article  PubMed  CAS  Google Scholar 

  46. Barold, S. S., & Herweg, B. (2005). Upper rate response of biventricular pacing devices. Journal of Interventional Cardiac Electrophysiology, 12, 129–136.

    Article  PubMed  Google Scholar 

  47. Bernheim, A., Ammann, P., Sticherling, C., Burger, P., Schaer, B., Brunner-La Rocca, H. P., et al. (2005). Right atrial pacing impairs cardiac function during resynchronization therapy: Acute effects of DDD pacing compared to VDD pacing. Journal of the American College of Cardiology, 45, 1482–1487.

    Article  PubMed  Google Scholar 

  48. Pires, L. A., Abraham, W. T., Young, J. B., Johnson, K. M., & MIRACLE and MIRACLE-ICD Investigators (2006). Clinical predictors and timing of New York Heart Association class improvement with cardiac resynchronization therapy in patients with advanced chronic heart failure: results from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE) and Multicenter InSync ICD Randomized Clinical Evaluation (MIRACLE-ICD) trials. American Heart Journal, 151, 837–843.

    Article  PubMed  Google Scholar 

  49. Tedrow, U. B., Kramer, D. B., Stevenson, L. W., Stevenson, W. G., Baughman, K. L., Epstein, L. M., et al. (2006). Relation of right ventricular peak systolic pressure to major adverse events in patients undergoing cardiac resynchronization therapy. American Journal of Cardiology, 97, 1737–1740.

    Article  PubMed  Google Scholar 

  50. Kurzidim, K., Reinke, H., Sperzel, J., Schneider, H. J., Danilovic, D., Siemon, G., et al. (2005). Invasive optimization of cardiac resynchronization therapy: Role of sequential biventricular and left ventricular pacing. Pacing and Clinical Electrophysiology, 28, 754–761.

    Article  PubMed  Google Scholar 

  51. van Gelder, B. M., Bracke, F. A., Meijer, A., & Pijls, N. H. (2005). The hemodynamic effect of intrinsic conduction during left ventricular pacing as compared to biventricular pacing. Journal of the American College of Cardiology, 4(6), 2305–2310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Serge Barold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barold, S.S., Ilercil, A., Leonelli, F. et al. First-degree atrioventricular block. J Interv Card Electrophysiol 17, 139–152 (2006). https://doi.org/10.1007/s10840-006-9065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-006-9065-x

Keywords

Navigation