Skip to main content

Advertisement

Log in

Temperature-induced double P-E loops and improved energy storage performances of BaTiO3-based ceramics sintered at lower temperature

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In the current investigation, the CuO modified BaTiO3 ceramics were prepared through the conventional electroceramic processing. XRD, XPS, and SEM have been employed to characterize the phases, valences of ions and the microstructures. The sintering behaviors of the prepared samples were performed using a dilatometer, and ceramics could be fabricated at lower temperature. The electric field and temperature dependent energy storage performance have been studied. The introducing of CuO is very effective to improve the energy storage density and the efficiency due to the formed double P-E loops. 0.5 wt.% CuO modified ceramic exhibited an energy density of 0.52 J/cm3, which is nearly twice of pure BaTiO3 ceramic. The J-E loops of CuO modified samples indicated double domain switches, consistent with the double P-E loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.B. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12(9), 821–826 (2013)

    CAS  Google Scholar 

  2. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 1267–1324 (1998)

    CAS  Google Scholar 

  3. Q. Zhang, Y. Zhang, X.R. Wang, T. Ma, Influence of sintering temperature on energy storage properties of BaTiO3-(Sr1–1.5xBix)TiO3 ceramics, Ceram. Int. 38 (2012) 4765–70

  4. N. Ortega, A. Kumar, J.F. Scott, D.B. Chrisey, Relaxor-ferroelectric superlattices: High energy density capacitors. J. Phys. Condens. Matter 24(44), 445901 (2012)

    CAS  Google Scholar 

  5. T. Wang, L. Jin, C.C. Li, Q.Y. Hu, Relaxor ferroelectric BaTiO3-bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98(2), 559–566 (2015)

    CAS  Google Scholar 

  6. L. Zhang, Z. Xu, Z.R. Li, S. Xia, Preparation and characterization of high Tc (1-x)BiScO3-xPbTiO3 ceramics from high energy ball milling process. J. Electroceram. 21(1-4), 605–608 (2008)

    CAS  Google Scholar 

  7. Q.Y. Hu, T. Wang, L.Y. Zhao, L. Jin, Dielectric and energy storage properties of BaTiO3–bi(Mg1/2Ti1/2)O3 ceramic: Influence of glass addition and biasing electric field. Ceram. Int. 43(1), 35–39 (2017)

    CAS  Google Scholar 

  8. D. Damjanovic, N. Klein, J. Li, V. Porokhonskyy, What can be expected from lead-free piezoelectric materials? Funct. Mater. Lett. 3(01), 5–13 (2010)

    CAS  Google Scholar 

  9. L. Jin, R.J. Huo, R.P. Guo, F. Li, Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl. Mater. Interfaces 8, 31109–31119 (2016)

    CAS  Google Scholar 

  10. H.B. Zhang, Y.W. Zhu, P.Y. Fan, M.A. Marwat, Temperature-insensitive electric-field-induced strain and enhanced piezoelectric properties of <001> textured (K,Na)NbO3-based lead-free piezoceramics. Acta Mater. 56, 389–398 (2018)

    Google Scholar 

  11. H.B. Zhang, C. Groh, Q. Zhang, W. Jo, Large strain in relaxor/ferroelectric composite lead-free piezoceramics. Adv. Electron. Mater. 1(6), 1500018 (2015)

    Google Scholar 

  12. L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures. J. Am. Ceram. Soc. 97(1), 1–27 (2014)

    CAS  Google Scholar 

  13. J. Yin, X. Lv, J.G. Wu, Enhanced energy storage properties of {Bi0.5[(Na0.8K0.2)1-zLiz]0.5}0.96Sr0.04(Ti1-x-yTaxNby)O3 lead-free ceramics. Ceram. Int. 43, 13541–13546 (2017)

    CAS  Google Scholar 

  14. J. Yin, Y.X. Zhang, X. Lv, J.G. Wu, Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. J. Mater. Chem. A 6(21), 9823–9832 (2018)

    CAS  Google Scholar 

  15. Q.B. Yuan, F.Z. Yao, Y.F. Wang, R. Ma, Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C 5, 9552–9558 (2017)

    CAS  Google Scholar 

  16. W.B. Li, D. Zhou, L.X. Pang, R. Xu, Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A 5(37), 19607–19612 (2017)

    CAS  Google Scholar 

  17. Y.Y. Zhao, J.W. Xu, L. Yang, C.R. Zhou, High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complexion. J. Alloys Compd. 666, 209–216 (2016)

    CAS  Google Scholar 

  18. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)

    CAS  Google Scholar 

  19. Z.S. Wu, K. Parvez, X.L. Feng, K. Mullen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4(1), 2487 (2013)

    Google Scholar 

  20. J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4(1), 1732 (2013)

    Google Scholar 

  21. J. Han, G.N. Li, F. Liu, M.Q. Wang, Investigation of K3V2( PO4)3/C nanocomposites as high-potential cathode materials for potassiumion batteries. Chem. Commun. 53(11), 1805–1808 (2017)

    CAS  Google Scholar 

  22. Y. Tian, L. Jin, Q.Y. Hu, K. Yu, Phase transitions in tantalum-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 7(2), 834–842 (2019)

    CAS  Google Scholar 

  23. B.B. Liu, X.H. Wang, Q.C. Zhao, L.T. Li, Improved energy storage properties of fine-crystalline BaTiO3 ceramics by coating powders with Al2O3 and SiO2. J. Am. Ceram. Soc. 98(8), 2641–2646 (2015)

    CAS  Google Scholar 

  24. Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3(35), 18146–18153 (2015)

    CAS  Google Scholar 

  25. Y.H. Huang, Y.J. Wu, W.J. Qiu, J. Li, Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc. 35, 1469–1476 (2015)

    CAS  Google Scholar 

  26. L.Q. Zhou, P.M. Vilarinho, J.L. Baptista, Dependence of the structural and dielectric properties of Ba1-xSrxTiO3 ceramic solid solutions on raw material processing. J. Eur. Ceram. Soc. 19(11), 2015–2020 (1999)

    CAS  Google Scholar 

  27. Y. Yan, C. Ning, Z.Z. Jin, H.R. Qin, The dielectric properties and microstructure of BaTiO3 ceramics with ZnO-Nb2O5 composite addition. J. Alloys Compd. 646, 748–752 (2015)

    CAS  Google Scholar 

  28. X.F. Su, B.C. Riggs, M. Tomozawa, J.K. Nelson, Prepartion of BaTiO3/low melting glass core-shell nanoparticles for energy storage capacitor applications. J. Mater. Chem. A 2(42), 18087–18096 (2014)

    CAS  Google Scholar 

  29. C.L. Zhao, H.J. Wu, F. Li, Y.Q. Cai, Practical high piezoelectricity in barium Titanate ceramics utilizing multiphase convergence with broad structural flexibility. J. Am. Chem. Soc. 140(45), 15252–15260 (2018)

    CAS  Google Scholar 

  30. T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)

    CAS  Google Scholar 

  31. G. Liu, D. Zhang, T.W. Button, Preparation of concentrated barium titanate suspensions incorporating nano-sized powders. J. Eur. Ceram. Soc. 30(2), 171–176 (2010)

    Google Scholar 

  32. A. Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Paradhan, Structural, microstructural and electrical studies of La and cu doped BaTiO3 ceramics. Phys. B 405(1), 99–106 (2010)

    CAS  Google Scholar 

  33. X.D. Jian, B. Lu, D.D. Li, Y.B. Yao, Direct measurement of large Electrocaloric effect in Ba(ZrxTi1-x)O3 ceramics. ACS Appl. Mater. Interfaces 10(5), 4801–4807 (2018)

    CAS  Google Scholar 

  34. T. Li, K. Yang, R.Z. Xue, Y.C. Xue, The effect of CuO doping on the microstructures and dielectric properties of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 22(7), 838–842 (2011)

    CAS  Google Scholar 

  35. M.V.S. Rao, Effect of copper doping on structural, dielectric and DC electrical resistivity properties of BaTiO3. Adv. Mater. Phys. Chem. 3, 77–82 (2013)

    Google Scholar 

  36. W.L. Warren, K. Vanheusden, D. Dimos, G.E. Pike, Oxygen vacancy motion in perovskite oxides. J. Am. Ceram. Soc. 79(2), 536–538 (1996)

    CAS  Google Scholar 

  37. M. Valant, D. Suvorov, R.C. Pullar, K. Sarma, A mechanism for low-temperature sintering. J. Eur. Ceram. Soc. 26(13), 2777–2783 (2006)

    CAS  Google Scholar 

  38. D.Y. Liang, X.H. Zhu, J.L. Zhu, J.G. Zhu, Effects of CuO addition on the structure and electrical properties of low temperature sintered Ba(Zr,Ti)O3 lead-free piezoelectric ceramics. Ceram. Int. 40(2), 2585–2592 (2014)

    CAS  Google Scholar 

  39. C.S. Chou, C.L. Liu, C.M. Hsiung, R.Y. Yang, Preparation and characterization of the lead-free piezoelectric ceramic of Bi0.5Na0.5TiO3 doped with CuO. Power Technol. 210, 212–219 (2011)

    CAS  Google Scholar 

  40. J.G. Jolley, G.G. Geesey, M.R. Hankins, R.B. Wright, Auger-Electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide. Appl. Surf. Sci. 37(4), 469–480 (1989)

    CAS  Google Scholar 

  41. F. Parmigiani, G. Pacchioni, F. Illas, P.S. Bagus, Studies of the CuO bond in cupric oxide by x-ray photoelectron-spectroscopy and abinitio electronic-structure models. J. Electron Spectrosc. Relat. Phenom. 59(3), 255–269 (1992)

    CAS  Google Scholar 

  42. Z. Hussaint, M.A. Salim, M.A. Khan, E.E. Khawaja, X-ray photoelectron and auger-spectroscopy study of copper-sodium germanate glasses. J. Non-Cryst. Solids 110(1), 44–52 (1989)

    Google Scholar 

  43. Y. Yang, K.H. Liu, X.K. Liu, G. Liu, Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO3 ceramics prepared by microwave sintering. Ceram. Int. 42(6), 7877–7882 (2016)

    CAS  Google Scholar 

  44. V. Buscaglia, M.T. Buscaglia, M. Viviani, L. Mitoseriu, Grain size and grain boundary-related effects on the properties of nanocrys-talline barium titanate ceramics. J. Eur. Ceram. Soc. 14, 2889–2898 (2006)

    Google Scholar 

  45. G. Arlt, D. Hennings, G. Dewith, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 4, 1619–1625 (1985)

    Google Scholar 

  46. D.M. Lin, K.W. Kwok, H.L.W. Chan, Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 90, 232903 (2007)

    Google Scholar 

  47. P. Fu, Z.J. Xu, R.Q. Chu, W. Li, Structure and electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3-Bi0.5(Na0.82K0.18)0.5TiO3-BiAlO3 lead free piezoelectric ceramics. Mater. Chem. Phys. 138, 140–145 (2013)

    CAS  Google Scholar 

  48. J.Y. Wu, A. Mahajana, L. Riekehrb, H.F. Zhang, Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3ceramics with polar nano regions for high power energy storage. Nano Energy 50, 723–732 (2018)

    CAS  Google Scholar 

  49. M.I. Morozov, D. Damjanovic, Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardening, and softening. J. Appl. Phys. 107, 034106 (2010)

    Google Scholar 

  50. T. Wang, J.C. Hu, H.B. Yang, L. Jin, Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3–0.35BaTiO3 ceramics. J. Appl. Phys. 121, 084103 (2017)

    Google Scholar 

  51. Y.Q. Tan, J.L. Zhang, C.L. Wang, Aging behaviours of CuO modified BaTiO3 ceramics. Adv. Appl. Ceram. 113(4), 223–227 (2014)

    CAS  Google Scholar 

  52. L. Zhao, J. Gao, Q. Liu, S.J. Zhang, Silver Niobate Lead-free Antiferroelectric ceramics: Enhancing energy storage density by B-site doping. ACS Appl. Mater. Interfaces 10(1), 819–826 (2018)

    CAS  Google Scholar 

  53. H.X. Yan, F. Inam, G. Viola, H.P. Ning, The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 1, 107–118 (2011)

    CAS  Google Scholar 

  54. A. Mahajan, H.F. Zhang, J.Y. Wu, E.V. Ramana, Effect of Phase Transitions on Thermal Depoling in Lead-Free 0.94(Bi0.5Na0.5TiO3)−0.06(BaTiO3) Based Piezoelectrics. J. Phys. Chem. C 121, 5709–5718 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (51502248 and 51672226); Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0356); Fundamental Research Funds for the Central Universities (XDJK2017D013, XDJK2018B009, XDJK2018C002); National Undergraduate Training Program for Innovation and Entrepreneurship (201910635038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Chen, P., Shi, W. et al. Temperature-induced double P-E loops and improved energy storage performances of BaTiO3-based ceramics sintered at lower temperature. J Electroceram 43, 96–105 (2019). https://doi.org/10.1007/s10832-019-00184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-019-00184-5

Keywords

Navigation