Skip to main content
Log in

Crystal Structure and electrical properties of complex perovskite solid solutions based on (1-x) NaNbO3-xBi (Zn0.5Ti0.5) O3

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Ceramics based on the perovskite solid solution (1-x) NaNbO3-xBi (Zn0.5Ti0.5) O3 were prepared using conventional solid state synthesis. The crystal structure, electrical, and optical properties were examined. According to diffraction data, a single perovskite phase could be identified up to the composition x = 0.09. As the Bi (Zn0.5Ti0.5) O3 content increased the crystal structure transitioned from orthorhombic to pseudocubic symmetry. Furthermore, dielectric data showed that the dielectric maximum shifted to lower temperatures with the addition of Bi (Zn0.5Ti0.5) O3. Polarization hysteresis data revealed a slim linear loop across the whole range of solid solutions. Optical data also showed a decrease in the optical band gap from 3.4 eV for pure NaNbO3 to 2.9 eV for the x = 0.09 composition. Using impedance spectroscopy, an electrically inhomogeneous microstructure was observed for compositions with increased Bi (Zn0.5Ti0.5) O3 content. Finally, the substitution of Ta on the B-site was shown to shift the dielectric maximum to temperatures as low as 100 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.J. Foster, J.K. Meen, D.A. Fox, Cutan Oculr Toxicol 32, 18 (2013)

    Article  Google Scholar 

  2. Official Journal of the European Union, (n.d.).

  3. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, J Appl Phys 92, 1489 (2002)

    Article  Google Scholar 

  4. T. Takenaka, K. Maruyama, K. Sakata, Jpn J Appl Phys 30, 2236 (1991)

    Article  Google Scholar 

  5. A. Safari, M. Abazari, IEEE Transactions on ultrasonics. Ferroelectr Freq Control 57, 2165 (2010)

    Article  Google Scholar 

  6. S. Ikegami, I. Ueda, Jpn J Appl Phys 13, 1572 (1974)

    Article  Google Scholar 

  7. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  Google Scholar 

  8. R. Zuo, D. Lv, J. Fu, Y. Liu, L. Li, J. Alloys Compd 476, 836 (2009)

    Article  Google Scholar 

  9. D. Lin, K.W. Kwok, H.L.W. Chan, Appl Phys A 91, 167 (2008)

    Article  Google Scholar 

  10. S. G. Jona F, Ferroelectric Crystals (Dover Publications, New York, n.d.).

  11. G. Shirane, R. Newnham, R. Pepinsky, Phys Rev 96, 581 (1954)

    Article  Google Scholar 

  12. H.D. Megaw, Ferroelectrics, 1974

    Google Scholar 

  13. C.N.W. Darlington, K.S. Knight, Acta Crystallogr Sect B: Struct Sci 55, 24 (1999)

    Article  Google Scholar 

  14. M.R. Suchomel, A.M. Fogg, M. Allix, H. Niu, J.B. Claridge, M.J. Rosseinsky, Chem Mater 18, 4987 (2006)

    Article  Google Scholar 

  15. M.R. Suchomel, P.K. Davies, Appl Phys Lett 86, 262905 (2005)

    Article  Google Scholar 

  16. C.-C. Huang, N. Vittayakorn, A. Prasatkhetragarn, B.J. Gibbons, D.P. Cann, Jpn J Appl Phys 48, 031401 (2009)

    Article  Google Scholar 

  17. A. Torres-Pardo, R. Jiménez, E. García-González, J.M. González-Calbet, J Mater Chem 22, 14938 (2012)

    Article  Google Scholar 

  18. L. Fu, D. Lin, Q. Zheng, X. Wu, L. Wu, H. Sun, Y. Wan, X. Fan, C. Xu, Curr Appl Phys 12, 1523 (2012)

    Article  Google Scholar 

  19. D. Lin, K.W. Kwok, J Mater Sci Mater Electron 21, 1060 (2010)

    Article  Google Scholar 

  20. A. Le Bail, H. Duroy, J.L. Fourquet, Mater Res Bull 23, 447 (1988)

    Article  Google Scholar 

  21. A. C. Larson and R. B. Von Dreele, General Structure Analysis System. LANSCE, MS-H805, Los Alamos, New Mexico (1994).

  22. J. Koruza, J. Tellier, B. Malič, V. Bobnar, M. Kosec, J Appl Phys 108, 113509 (2010)

    Article  Google Scholar 

  23. R.D. Shannon, Acta Cryst Sect A 32, 751 (1976)

    Article  Google Scholar 

  24. A.C. Sakowski-Cowley, K. Łukaszewicz, H.D. Megaw, Acta Cryst Sect B 25, 851 (1969)

    Article  Google Scholar 

  25. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Scripta Mater 61, 68 (2009)

    Article  Google Scholar 

  26. C.-C. Huang, D.P. Cann, X. Tan, N. Vittayakorn, J Appl Phys 102, 044103 (2007)

    Article  Google Scholar 

  27. I.P. Raevski, S.A. Prosandeev, J Phys and Chem Solids 63, 1939 (2002)

    Article  Google Scholar 

  28. V.V. Titov, V.A. Shuvaeva, S.I. Raevskaya, A.F. Semenchev, A.M. Glazer, S.I. Shevtsova, I.P. Raevski, M.A. Malitskaya, Ferroelectrics 374, 58 (2008)

    Article  Google Scholar 

  29. S.I. Raevskaya, V.V. Titov, M.A. Malitskaya, I.P. Raevski, L.A. Reznichenko, L.A. Shilkina, Ferroelectrics 399, 27 (2010)

    Article  Google Scholar 

  30. R.M. Glaister, J Amer Ceram Soc 43, 348 (1960)

    Article  Google Scholar 

  31. H. Iwasaki, Rev Electr Commun Lab 12, 469 (1964)

    Google Scholar 

  32. N. Setter and L. E. Cross, J. Mate.r Sci. 15, 2478 (1980).

  33. K. Uchino, S. Nomura, L.E. Cross, S.J. Jang, R.E. Newnham, J Appl Phys 51, 1142 (1980)

    Article  Google Scholar 

  34. L. E. Cross and B. T. Nicholson, Phil. Mag. 46, 453 (n.d.).

  35. H. Kato, H. Kobayashi, A. Kudo, J Phys Chem B 106, 12441 (2002)

    Article  Google Scholar 

  36. H.W. Eng, P.W. Barnes, B.M. Auer, P.M. Woodward, J Solid State Chem 175, 94 (2003)

    Article  Google Scholar 

  37. R. Aguiar, D. Logvinovich, A. Weidenkaff, A. Rachel, A. Reller, S.G. Ebbinghaus, J Dye and Pigment 76, 70 (2008)

    Article  Google Scholar 

  38. N. Raengthon, V.J. DeRose, G.L. Brennecka, D.P. Cann, Appl Phys Lett 101, 112904 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasiporn Prasertpalichat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasertpalichat, S., Cann, D.P. Crystal Structure and electrical properties of complex perovskite solid solutions based on (1-x) NaNbO3-xBi (Zn0.5Ti0.5) O3 . J Electroceram 33, 214–220 (2014). https://doi.org/10.1007/s10832-014-9953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9953-x

Keywords

Navigation