Skip to main content

Advertisement

Log in

Optimal design and application of a piezoelectric energy harvesting system using multiple piezoelectric modules

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

To enhance the output power of piezoelectric energy harvesting system up to the watt level, we designed a multi-piezoelectric array (MPA) energy harvesting system that can overcome the limitations of a single-piezoelectric harvesting systems. The MPA energy harvesting system was designed using an impact-type harvester utilizing a hitting stick, as such systems can generate higher output power than vibration-type methods using a cantilever in a single-piezoelectric energy harvesting system. We investigated the effects that various connection and rectification methods had on the output power of a piezoelectric energy harvesting system consisting of four 35 ×45 × 0.2 mm3 piezoelectric modules. We found that the output power was highest when each module was rectified before the modules were connected in parallel and that the optimal load resistance was inversely proportional to the number of modules if they were connected in parallel. To obtain watt-level power from the proposed MPA energy harvesting system, we designed a system consisting of 102 piezoelectric modules based on the derived optimized experimental conditions, from which we were able to obtain an output power of 1.99 W at 1800 hpm (hits per minute) and 500 Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.K. Ottman, H.F. Hofmann, G.A. Lesieutre, IEEE Trans. Power Electron. 18, 696 (2003)

    Article  Google Scholar 

  2. Y.C. Shu, I.C. Lien, Smart Mater. Struct. 15, 1499 (2006)

    Article  Google Scholar 

  3. H. Kim, S. Priya, K, Uchino. Jpn. J. Appl. Phys. 45, 5836 (2006)

    Article  Google Scholar 

  4. D. Song, H.K. Jang, S.B. Kim, C.H. Yang, M.S. Woo, S.K. Hong, J. Lee, T.H. Sung, J. Electroceram. 31, 1 (2013)

    Article  Google Scholar 

  5. D. Song, H.K. Jang, S.B. Kim, T.H. Sung, J. Electroceram. 31, 35 (2013)

    Article  Google Scholar 

  6. M. El-hami, P. Glynne-Jones, N.M. White, M. Hill, S. Beeby, E. James, A.D. Brown, J.N. Ross, Sens. Actuators A: Phys. 92, 335 (2001)

    Article  Google Scholar 

  7. B. Yang, C. Lee, W. Xiang, J. Xie, J.H. He, R.K. Kotlanka, S.P. Low, H. Feng, J. Micromech. Microeng. 19, 035001 (2009)

    Article  Google Scholar 

  8. P.D. Mitcheson, P. Miao, B.H. Stark, E.M. Yeatman, A.S. Holmes, T.C. Green, Sens. Actuators A. 115, 523 (2004)

    Article  Google Scholar 

  9. Y. Naruse, N. Matsubara, K. Mabuchi, M. Izumi, S. Suzuki, J. Micromech. Microeng. 19, 094002 (2009)

    Article  Google Scholar 

  10. S. Roundy, P.K. Wright, J.M. Rabaey, Comput. Commun. 26, 1131 (2003)

    Article  Google Scholar 

  11. S. Priya, J. Electroceram. 19, 167 (2007)

    Article  Google Scholar 

  12. C.D. Richards, M.J. Anderson, D.F. Bahr, R.F. Richards, J. Micromech. Microeng. 14, 717 (2004)

    Article  Google Scholar 

  13. M. Umeda, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 35, 3267 (1996)

    Article  Google Scholar 

  14. M. Umeda, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 36, 3146 (1997)

    Article  Google Scholar 

  15. S. Priya, Appl. Phys. Lett. 87, 184101 (2005)

    Article  Google Scholar 

  16. M. Renaud, P. Fiorini, C. van Hoof, Smart Mater. Struct. 16, 1125 (2007)

    Article  Google Scholar 

  17. H.J. Jung, K.H. Baek, S. Hidaka, D. Song, S.B. Kim, T.H. Sung, Ferroelectrics 449, 83 (2013)

    Article  Google Scholar 

  18. H.J. Jung, D. Song, S.K. Hong, Y. Song, T.H. Sung, Jpn. J. Appl. Phys. 52, 10MB03 (2013)

  19. N. Kong, D.S. Ha, A. Erturk, D.J. Inman, J. Intell. Mater. Syst. Struct. 21, 1293 (2010)

    Article  Google Scholar 

  20. S.K. Hong, M.S. Woo, D. Song, C.H. Yang, K.H. Baek, T.H. Sung, Ferroelectrics 449, 52 (2013)

    Article  Google Scholar 

  21. S.B. Kim, H.K. Jang, D. Song, T.H. Sung, presented at IWPMA 2011 and 6th Annual Energy Harvesting Workshop (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyun Sung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, J.W., Jung, H.J., Baek, K.H. et al. Optimal design and application of a piezoelectric energy harvesting system using multiple piezoelectric modules. J Electroceram 32, 396–403 (2014). https://doi.org/10.1007/s10832-014-9934-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9934-0

Keywords

Navigation