Skip to main content
Log in

Development of 2-2 piezoelectric ceramic/polymer composites by direct-write technique

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The Micropen™ direct-write technique was used to fabricate ceramic skeletal structures to develop piezoelectric ceramic/polymer composites with 2–2 connectivity for medical imaging applications. A lead zirconate titanate PZT paste with ∼35 vol.% solids loading was prepared as a writing material and the paste’s rheological properties were characterized to evaluate its feasibly for Micropen deposition. A serpentine pattern was designed and deposited in AutoCAD and with a 100 μm pen tip, respectively. After debinding and sintering, the microstructural analysis showed that the ceramic structures were fully densified, with good bonding among layers. Typical single-layer thickness was ∼50 μm, and sintered line width was ∼120 μm. The composites containing 30–45 vol.% PZT were fabricated within 1 cm2 area, with thicknesses ranging from 350 to 380 μm. Their electromechanical and dielectric properties were measured and found similar to that of composites fabricated by other techniques. The k t was ∼0.61, d 33 was 210–320, with Q m of ∼6 and dielectric constant of 650–940.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics. (Academic, New York, 1971), pp. 271–280

    Google Scholar 

  2. T.R. Gururaja, A. Safari, N.E. Newnham, L.E. Cross, in Electronic Ceramics, ed. by L.M. Levinson (Marcel Dekker, New York, 1987), pp. 93–145

    Google Scholar 

  3. A. Safari, M. Allahverdi, E.K. Akdogan, J. Mater. Sci. 41, 177 (2006). doi:10.1007/s10853-005-6062-x

    Article  CAS  ADS  Google Scholar 

  4. V.F. Janas, A. Safari, J. Am. Ceram. Soc. 78(11), 2945 (1995). doi:10.1111/j.1151-2916.1995.tb09068.x

    Article  CAS  Google Scholar 

  5. W. Hackenberger, S. Kown, P. Rehrig, in Proc. of the IEEE Ultrason. Symp. 1253 (2002)

  6. J. Park, S. Lee, S. Park, J. Cho, S. Jung, J. Han, S. Kang, Sens. Actuators A Phys. 108, 206 (2003). doi:10.1016/S0924-4247(03)00362-5

    Article  CAS  Google Scholar 

  7. K. Li, D.W. Zeng, K.C. Yung, H.L.W. Chan, C.L. Choy, Mater. Chem. Phys. 75, 147 (2000). doi:10.1016/S0254-0584(02)00044-5

    Article  Google Scholar 

  8. Y.H. Koh, C.B. Yoon, S.M. Lee, H.E. Kim, J. Am. Ceram. Soc. 88(4), 1060 (2005). doi:10.1111/j.1551-2916.2005.00210.x

    Article  CAS  Google Scholar 

  9. G.M. Lous, I.A. Cornejo, T.F. McNulty, A. Safari, S.C. Danforth, J. Am. Ceram. Soc. 83(1), 12 (2000). doi:10.1111/j.1151-2916.2000.tb01159.x

    Article  Google Scholar 

  10. S. Turcu, B. Jadidian, S.C. Danforth, A. Safari, J. Electroceram. 9, 165 (2002). doi:10.1023/A:1023209107995

    Article  CAS  Google Scholar 

  11. J.A. Lewis, J. Am. Ceram. Soc. 89(12), 3599 (2006). doi:10.1111/j.1551-2916.2006.01382.x

    Article  CAS  Google Scholar 

  12. J.E. Smay, J. Cesarano III, B.A. Tuttle, J.A. Lewis, J. Am. Ceram. Soc. 87(2), 293 (2004). doi:10.1111/j.1551-2916.2004.00293.x

    Article  CAS  Google Scholar 

  13. O. Dufaud, P. Marchal, S. Corbel, J. Eur. Ceram. Soc. 22, 2081 (2002). doi:10.1016/S0955-2219(02)00036-5

    Article  CAS  Google Scholar 

  14. R. Noguera, M. Lejeune, T. Chartier, J. Eur. Ceram. Soc. 25, 2055 (2005). doi:10.1016/j.jeurceramsoc.2005.03.223

    Article  CAS  Google Scholar 

  15. A. Piqué, D.B. Chrisey, in Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Powder Sources, ed. by A. Piqué, D.B. Chrisey (Academic, New York, 2001), pp. 1–11

    Google Scholar 

  16. P.G. Clem, N.S. Bell, G.L. Brennecka, B.H. King, D.B. Dimos, in Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Powder Sources, ed. by A. Piqué, D.B. Chrisey (Academic, New York, 2001), pp. 229–256

    Google Scholar 

  17. D. Dimos, P. Yang, T.J. Garino, M.V. Raymoud, M.A. Rodriguez, in Proc. of Solid Freeform Fabrication Symp., Austin, TX, University of Texas at Austin, 133 (1999)

  18. B.H. King, D. Dimos, P. Yang, S.L. Morissette, J. Electroceram. 3(2), 173 (1999). doi:10.1023/A:1009999227894

    Article  CAS  Google Scholar 

  19. S.L. Morissette, J.A. Lewis, P.G. Clem, J. Cesarano III, D.B. Dimos, J. Am. Ceram. Soc. 84(11), 2462 (2001)

    Article  CAS  Google Scholar 

  20. V. Tohver, S.L. Morissette, J.A. Lewis, B.A. Tuttle, J.A. Voigt, D.B. Dimos, J. Am. Ceram. Soc. 85(1), 123 (2002)

    Article  CAS  Google Scholar 

  21. J. Sun, M. Vittadello, E.K. Akdogan, A. Safari, in Proc. of the 15th IEEE International Symposium on the Applications of Ferroelectrics (ISAF) 57 (2006)

  22. M. Allahverdi, A. Safari, in Proc. of the 14th IEEE International Symposium on the Applications of Ferroelectrics (ISAF), 250 (2004)

  23. M. Kunduraci, W.K. Simon, E.K. Akdogan, A. Safari, in Proc. of the 14th IEEE International Symposium on the Applications of Ferroelectrics (ISAF), 21 (2004)

  24. IEEE, Standard on Piezoelectricity, ANSI/IEEE Std. 176, (the Institute of Electrical and Electronics Engineers (IEEE), Inc., New York, 1987)

  25. E.K. Akdoğan, M.S. Thesis, METU, Ankara, Turkey (1994)

  26. J.S. Reed, Principles of Ceramics Processing, 2nd edn. (Wiley, New York, 1995)

    Google Scholar 

  27. D.D.N. Hall, J.T. Bennett, G. Hayward, in Proc. of Soc. Photo-Opt. Instrum. Eng.(SPIE) 1733, 216 (1992)

  28. W.A. Smith, in Proc. of IEEE Ultrason. Symp. Montreal, Canada, 2, 755 (1989)

  29. T.R. Gururaja, W.A. Schulze, L.E. Cross, IEEE Trans. Sonics Ultrason. SU-32, 481 (1985)

    Google Scholar 

  30. T.R. Gururaja, R.E. Newnham, K.A. Klicker, in Proc. of Ultrason. Symp. 576 (1980)

  31. W. Cao, Q.M. Zhang, L.E. Cross, IEEE Trans. on Ultrason. Ferroelec. Freq. Contr. 40(2), 103 (1993). doi:10.1109/58.212557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Glenn Howatt Foundation at Rutgers University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Safari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Ngernchuklin, P., Vittadello, M. et al. Development of 2-2 piezoelectric ceramic/polymer composites by direct-write technique. J Electroceram 24, 219–225 (2010). https://doi.org/10.1007/s10832-009-9561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-009-9561-3

Keywords

Navigation