Skip to main content
Log in

Pyroelectric and dielectric properties of lead lanthanum zirconate titanate (Pb0.92La0.08)(Zr0.65Ti0.35)O3-P(VDF/TFE)(0.98/0.02) nanocomposites

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

PLZT-P(VDF/TFE) 0–3 composites with nanosized lead lanthanum zirconate titanate (Pb0.92La0.08)(Zr0.65Ti0.35)O3 (PLZT 8/65/35) ceramic powders of volume fraction Φ up to 0.2 were fabricated using PLZT powders imbedded in a copolymer P(VDF/TFE)(0.98/0.02) matrix. The PLZT nanopowders were prepared by the sol-gel technique. The PLZT-P(VDF/TFE) composite samples were prepared from ceramic and polymer powders by the hot-pressing method. Dielectric response was studied in the frequency range from 100 Hz to 1 MHz and at temperatures from 100 to 450 K. The pyroelectric properties were studied by dynamic method with modulation frequency from 1 to 100 Hz. The dielectric response of the ceramics-polymer composite was found to be a combination of the responses of the pure polymer and the ceramics: (1) the addition of the PLZT ceramics increases the value of the dielectric permittivity ɛ′, (2) the composite shows the maximum of the permittivity coming from the PLZT ceramics, (3) the temperature dependences of the dielectric loss tgδ are characterized by the maximum attributed to the α-relaxation (glass transition) in the pure polymer. The pyroelectric coefficient of the composite increases from ∼20 μC/m2K in pure P(VDF/TFE) to ∼140 μC/m2K in the composites of Φ = 0.15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.J. Dias, D.K. Das-Gupta, in Electrets: Ferroelectric Ceramic/Polymer Composite Electrets, vol. 2, ed. by R. Gerhard-Multhaupt (Laplacian, Morgan Hill, CA, 1999), p. 193

    Google Scholar 

  2. Y. Wang, W. Zhong, P. Zhang, J. Appl. Phys. 74(1), 521 (1993). doi:10.1063/1.355263

    Article  ADS  CAS  Google Scholar 

  3. F. Yang et al., J. Appl. Phys. 94(4), 2553 (2003). doi:10.1063/1.1592292

    ADS  CAS  Google Scholar 

  4. B. Hilczer, J. Kułek, E. Markiewicz, M. Kosec, Ferroelectrics 293, 253 (2003)

    CAS  Google Scholar 

  5. M. Olszowy, E. Markiewicz, C. Pawlaczyk, E. Nogas-Ćwikiel, M. Płońska, Paper presented at the XIII Int. seminar on physics and chemistry of solids, Ustroń, Pl, 10–13 June 2007

  6. X. Tan, J.K. Shang, Scr. Mater. 43, 925 (2000). doi:10.1016/S1359-6462(00)00514-5

    Article  CAS  Google Scholar 

  7. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    CAS  Google Scholar 

  8. L.B. Kong, J. Ma, W. Zhu, O.K. Tan, Mater. Res. Bull. 36, 1675 (2001). doi:10.1016/S0025-5408(01)00654-7

    Article  CAS  Google Scholar 

  9. M. Cerqueira, R.S. Nasar, E.R. Leite, E. Longo, J.A. Varela, Ceram. Int. 26, 231 (2000). doi:10.1016/S0272-8842(99)00047-4

    Article  CAS  Google Scholar 

  10. M. Płońska, D. Czekaj, Z. Surowiak, Mater. Sci. 21, 431 (2003)

    Google Scholar 

  11. N. Koizumi, J. Hagino, Y. Murata, Ferroelectrics 32, 141 (1981)

    CAS  Google Scholar 

  12. H. Freimuth, C. Sinn, M. Dettenmaier, Polymer (Guildf.) 37, 831 (1996). doi:10.1016/0032-3861(96)87261-2

    Article  CAS  Google Scholar 

  13. Landolt-Börnstein, in Science and Technology: Numerical Data and Functional Relationship, Vol. III/28a (Springer, Berlin, 1981), p. 430

  14. D. Viehland, Z. Xu, D.A. Payne, J. Appl. Phys. 74, 7454 (1993). doi:10.1063/1.354968

    Article  ADS  CAS  Google Scholar 

  15. A.G. Chynoweth, J. Appl. Phys. 27, 78 (1956). doi:10.1063/1.1722201

    Article  ADS  CAS  Google Scholar 

  16. L. Eric Cross, Ferroelectrics 151, 305 (1994)

    Google Scholar 

  17. V. Bovtun, J. Petzelt, V. Porokhonsky, S. Kamba, Y. Yakimenko, J. Eur. Ceram. Soc. 21, 1307 (2001). doi:10.1016/S0955-2219(01)00007-3

    Article  CAS  Google Scholar 

  18. D. Viehland, Z. Xu, D.A. Payne, J. Appl. Phys. 74, 7454 (1993). doi:10.1063/1.354968

    Article  ADS  CAS  Google Scholar 

  19. D. Viehland, M. Wuttig, L.E. Cross, J. Appl. Phys. 69, 6595 (1991). doi:10.1063/1.348871

    Article  ADS  CAS  Google Scholar 

  20. B. Hilczer, J. Kułek, E. Markiewicz, M. Kosec, B. Malic, J. Non-Cryst. Solids 305, 167 (2002). doi:10.1016/S0022-3093(02)01103-1

    Article  ADS  CAS  Google Scholar 

  21. B. Hilczer, J. Kułek, E. Markiewicz, M. Kosec, Ferroelectrics 267, 277 (2002)

    CAS  Google Scholar 

  22. K. Uchino, Ferroelectric Devices (Marcel Dekker, Basel, New York, 2000), pp. 2–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Olszowy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olszowy, M., Markiewicz, E., Pawlaczyk, C. et al. Pyroelectric and dielectric properties of lead lanthanum zirconate titanate (Pb0.92La0.08)(Zr0.65Ti0.35)O3-P(VDF/TFE)(0.98/0.02) nanocomposites. J Electroceram 23, 94–101 (2009). https://doi.org/10.1007/s10832-008-9546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-008-9546-7

Keywords

Navigation