Skip to main content
Log in

Effect of fluorine doping on the properties of ZnO films deposited by radio frequency magnetron sputtering

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

ZnO films with varying fluorine content were prepared on Corning glass by radio frequency magnetron sputtering of ZnO target containing ZnF2 at room temperature, and the compositional, electrical, optical, and structural properties of the as-grown films together with the vacuum-annealed films were investigated. The fluorine content in the fluorine doped ZnO (FZO) films increased almost linearly with increasing ZnF2 content in sputter target, and the highest atomic concentration was 7.3%. Vacuum-annealing caused a slight reduction of fluorine content in the films. The resistivity of the as-grown FZO films deposited showed a typical valley-like behavior with respect to the fluorine content in film, i.e. having minimum resistivity at intermediate fluorine content. Despite high fluorine content in the FZO films, the carrier concentration remained below 1.2 × 1020 cm−3, leading to very low doping efficiency level. Upon vacuum-annealing, the resistivity of FZO films decreased substantially due to increase in both the carrier concentration and the Hall mobility. From the structural analysis made by X-ray diffraction study, it was shown that addition of small amount of fluorine enhanced the crystallinity of FZO films with (002) preferred orientation, and that large amount of fluorine addition yielded disruption of preferred orientation. It was also shown that doping of fluorine rendered a beneficial effect in reducing the absorption loss of ZnO films in visible range, thereby substantially enhancing the figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. F. Carlin Jr., U.S. Geological Survey, Mineral Commodity Summaries, Jan. (2006)

  2. K. Ellmer, J. Phys. D: Appl. Phys. 34, 3097 (2001). DOI 10.1088/0022-3727/34/21/301

    Article  CAS  ADS  Google Scholar 

  3. T. Minami, MRS Bull. 25(8), 38 (2000)

    CAS  Google Scholar 

  4. J. Kr, M. Zeman, O. Kluth, F. Smole, M. Topi, Thin Solid Films 426, 296 (2003). DOI 10.1016/S0040-6090(03)00006-3

    Article  ADS  Google Scholar 

  5. R. Groenen, J.L. Linden, H.R.M. van Lierop, D.C. Schram, A.D. Kuypers, M.C.M. van de Sanden, Appl. Surf. Sci. 173, 40 (2001). DOI 10.1016/S0169-4332(00)00875-8

    Article  CAS  ADS  Google Scholar 

  6. S.-M. Park, T. Ikegami, K. Ebihara, Thin Solid Films 513, 90 (2006). DOI 10.1016/j.tsf.2006.01.051

    Article  CAS  ADS  Google Scholar 

  7. S. Kishimoto, T. Yamada, K. Ikeda, H. Makino, T. Yamamoto, Surf. Coat. Technol. 201, 4000 (2006). DOI 10.1016/j.surfcoat.2006.08.009

    Article  CAS  Google Scholar 

  8. J. Hu, R.G. Gordon, Solar Cells 30, 437 (1991). DOI 10.1016/0379-6787(91)90076-2

    Article  CAS  Google Scholar 

  9. M. de la L. Olivera, A. Maldonado, R. Asomoza, O. Solorza, D.R. Acosta, Thin Solid Films 394, 242 (2001)

    Google Scholar 

  10. M. de la L. Olivera, A. Maldonado, R. Asomoza, Solar Energy Mat. Solar Cell 73, 425 (2002). DOI 10.1016/S0927-0248(02)00211-8

    Article  Google Scholar 

  11. T. Miyata, S. Ida, T. Minami, J. Vac. Sci. Technol. A 21(4), 1404 (2003). DOI 10.1116/1.1580492

    Article  CAS  ADS  Google Scholar 

  12. T. Minami, S. Ida, T. Miyata, Y. Minamoto, Thin Solid Films 445, 268 (2003). DOI 10.1016/S0040-6090(03)01159-3

    Article  CAS  ADS  Google Scholar 

  13. H.Y. Xu, Y.C. Liu, R. Mu, C.L. Shao, Y.M. Lu, D.Z. Shen, X.W. Fan, Appl. Phys. Lett. 86, 123107–1 (2005). DOI 10.1063/1.1884256

    Article  ADS  Google Scholar 

  14. R.G. Gordon, MRS Bull. 25(8), 52 (2000)

    CAS  Google Scholar 

  15. R.C. Weast, M.J. Astle, Handbook of Chemistry and Physics, 61th edn. (CRC, Boca Raton, 1980–1981), pp. B-164

    Google Scholar 

  16. Y. Shigesato, N. Shin, M. Kamei, P.K. Song, I. Yasui, Jpn. J. Appl. Phys. 29, 6422 (2000). DOI 10.1143/JJAP.39.6422

    Article  ADS  Google Scholar 

  17. K.S. Lee, T.S. Lee, I.H. Kim, B. Cheong, W.M. Kim, Integr Ferroelectr 69, 295 (2005). DOI 10.1080/10584580590899045

    Article  CAS  Google Scholar 

  18. B. Stjerna, E. Olsson, C.G. Granqvist, J. Appl. Phys. 76, 3797 (1994). DOI 10.1063/1.357383

    Article  CAS  ADS  Google Scholar 

  19. R. Cebulla, W. Wendt, K. Ellmer, J. Appl. Phys. 83, 1087 (1998). DOI 10.1063/1.366798

    Article  CAS  ADS  Google Scholar 

  20. A. Sanchez-Juareza, A. Tiburcio-Silverb, A. Ortizc, E.P. Zironid, J. Rickards, Thin Solid Films 333, 196 (1998). DOI 10.1016/S0040-6090(98)00851-7

    Article  ADS  Google Scholar 

  21. A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B 61, 15019 (2000). DOI 10.1103/PhysRevB.61.15019

    Article  CAS  ADS  Google Scholar 

  22. K. Ellmer, J. Phys. D: Appl. Phys. 33, R17 (2000). DOI 10.1088/0022-3727/33/4/201

    Article  CAS  ADS  Google Scholar 

  23. L.E. Brus, J. Chem. Phys. 80, 4403 (1984). DOI 10.1063/1.447218

    Article  CAS  ADS  Google Scholar 

  24. T. Senda, Y.-J. Cho, T. Hirakawa, H. Okamoto, H. Takakura, Y. Hamakawa, Jpn. J. Appl. Phys. 39, 4716 (2000). DOI 10.1143/JJAP.39.4716

    Article  CAS  ADS  Google Scholar 

  25. S.A. Knickerbocker, A.K. Kulkarni, J. Vac. Sci. Technol. A, 13, 1048 (1995). DOI 10.1116/1.579583

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Commerce, Industry and Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ku, D.Y., Kim, Y.H., Lee, K.S. et al. Effect of fluorine doping on the properties of ZnO films deposited by radio frequency magnetron sputtering. J Electroceram 23, 415–421 (2009). https://doi.org/10.1007/s10832-008-9480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-008-9480-8

Keywords

Navigation