Skip to main content
Log in

A design of a miniature ultrasonic pump using a bending disk transducer

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

If a pipe end is faced at a piston-vibrating surface with a small gap in liquid, the liquid is suctioned into the pipe. The present ultrasonic pump is based on this phenomenon to induce flow. For a low-profile configuration, we introduce a 30-mm-diameter bending disk driven by a ring-shaped PZT element bonded on the back of the disk. The disk vibrator is softly supported by frames via O-rings at its circumference, and is worked at the fundamental resonance frequency of 19 kHz of the bending mode. A pipe is installed perpendicularly to the center of the disk vibrator with a small gap. To improve the pump performance, we seek for the optimum vibration distribution of the disk vibrator. When the thickness around the disk center becomes large, the shape of the vibration distribution near the center approaches to a piston vibrator. If the flatness of the vibration distribution is defined as the vibration amplitude just under the pipe edge divided by the vibration amplitude at the disk center, it is 92.0% for the original bending disk. The flatness of the new design became 98.1% as a result of the optimization of the thickness profile of the disk. The pump pressure became high as the flatness became large when the gap size was small enough. The maximum pump pressure of 20.6 kPa was achieved when the vibration velocity at the disk center was 1.0 m/s and the gap size was 10 μm, while the maximum flow rate of 22.5 ml/min. was obtained with the input electrical power of 3.8 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Jiang, J. Mikkelsen, J.-M. Koo, D. Huber, S. Yao, L. Zhang, P. Zhou, J.G. Maveety, R. Prasher, J.G. Santiago, T.W. Kenny, K.E. Goodson, IEEE Trans. Compon. Packag. Technol. 25, 347 (2002)

    Article  Google Scholar 

  2. S. Takahashi, H. Kitagawa, Y. Tomikawa, Jpn. J. Appl. Phys. 41, 3442 (2002)

    Article  CAS  Google Scholar 

  3. S. Takahashi, Y. Tomikawa, Jpn. J. Appl. Phys. 42, 3098 (2003)

    Article  CAS  Google Scholar 

  4. S. Takahashi, Y. Tomikawa, Jpn. J. Appl. Phys. 42, 6135 (2003)

    Article  CAS  Google Scholar 

  5. R. Luharuka, C.-F. Wu, P.J. Hesketh, Sens. Actuat. 112, 187 (2004)

    Article  CAS  Google Scholar 

  6. X. Yang, Z. Zhou, H. Cho, X. Luo, Sens. Actuat. 130–131, 531 (2006)

    Article  CAS  Google Scholar 

  7. G.-S. Park, K. Seo, IEEE Trans Magn 40, 916 (2004)

    Article  Google Scholar 

  8. Y. Okada, N. Yamashiro, K. Ohmori, T. Masuzawa, T. Yamane, Y. Konishi, S. Ueno, IEEE/ASME Trans. Mechatron. 10, 658 (2005)

    Article  Google Scholar 

  9. M. Hu, H. Du, S. Ling, IEEE/ASME Trans. Mechatron. 7, 519 (2002)

    Article  Google Scholar 

  10. A. Oki, M. Takai, H. Ogawa, Y. Takamura, T. Fukasawa, J. Kikuchi, Y. Ito, T. Ichiki, Y. Horiike, Jpn. J. Appl. Phys. 42, 3722 (2003)

    Article  CAS  Google Scholar 

  11. I. Ederer, P. Raetsch, W. Schullerus, C. Tille, U. Zech, Sens. Actuators 62, 752 (1997)

    Article  Google Scholar 

  12. N.-T. Nguyen, T.-Q. Truong, Sens. Actuat. 97, 137 (2004)

    Article  CAS  Google Scholar 

  13. R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter, Sens. Actuat. 50, 81 (1995)

    Article  Google Scholar 

  14. O. Francais, I. Dufour, Sens. Actuat. 70, 56 (1998)

    Article  Google Scholar 

  15. P. Voigt, G. Schrag, G. Wachutka, Sens. Actuat. 66, 9 (1998)

    Article  Google Scholar 

  16. M. Takeuchi, K. Yamanouchi, Jpn. J. Appl. Phys. 33, 3045 (1994)

    Article  CAS  Google Scholar 

  17. G.-Q. Zhang, K. Hashimoto, M. Yamaguchi, Jpn. J. Appl. Phys. 35, 3248 (1996)

    Article  CAS  Google Scholar 

  18. A. Sano, Y. Matsui, S. Shiokawa, Jpn. J. Appl. Phys. 37, 2979 (1998)

    Article  CAS  Google Scholar 

  19. N.-T. Nguyen, R.M. White, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1463 (2000)

    Article  CAS  Google Scholar 

  20. K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, S. Shiokawa, Jpn. J. Appl. Phys. 43, 2987 (2004)

    Article  CAS  Google Scholar 

  21. C.-H. Yun, T. Hasegawa, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 43, 2864 (2004)

    Article  CAS  Google Scholar 

  22. T. Hasegawa, J. Friend, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 44, 4658 (2005)

    Article  CAS  Google Scholar 

  23. T. Hasegawa, K. Nakamura, S. Ueha, Ultrasonics 44, 575 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Hasegawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, T., Koyama, D., Nakamura, K. et al. A design of a miniature ultrasonic pump using a bending disk transducer. J Electroceram 20, 145–151 (2008). https://doi.org/10.1007/s10832-007-9122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9122-6

Keywords

Navigation