Skip to main content
Log in

Nanoscale characterization of polycrystalline ferroelectric materials for piezoelectric applications

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this work, the nanoscale electromechanical properties of several important piezoelectric materials [as exemplified by PbZr x Ti1−x O3 (PZT)] suitable for both bulk actuator and microelectromechanical system (MEMS) applications are reported. The investigations are performed by the piezoresponse force microscopy (PFM) that is currently the most suitable tool for both ferroelectric domain imaging and local piezoelectric studies. The local piezoresponse of individual grains is measured in PZT films and compared with average piezoelectric behavior. Frequency dependencies of local piezoelectric coefficients are presented and analyzed. The results on local piezoelectric nonlinearity, as well as on nanoscale fatigue and aging are briefly discussed. These measurements demonstrate that PFM is promising for studying local piezoelectric phenomena in polycrystalline ferroelectrics where defects and other inhomogeneities are essential for the interpretation of macroscopic piezoelectric properties. Finally, local electromechanical properties of polycrystalline relaxors (PMN-PT, PLZT, doped BaTiO3) are briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J.F. Scott, Ferroelectr. Rev. 1, 1 (1998)

    Article  CAS  Google Scholar 

  2. D.L. Polla, L.F. Francis, MRS Bull. 59, July (1996)

  3. A. Gruverman, O. Auciello, H. Tokumoto, Annu. Rev. Mater. Sci. 28, 101 (1998)

    Article  CAS  Google Scholar 

  4. L.M. Eng, S. Grafstrom, C. Loppacher, F. Schlaphof, S. Trogisch, A. Roelofs, R. Waser, Adv. Solid State Phys. 41, 287 (2001)

    Article  CAS  Google Scholar 

  5. Nanoscale Phenomena in Ferroelectric Thin Films, ed. By Seungbum Hong (Kluwer, 2004)

  6. M. Alexe, A. Gruverman (ed.), Nanoscale Characterization of Ferroelectric Materials (Springer, Berlin Heidelberg New York, 2004)

  7. S.V. Kalinin, A. Rar, S. Jesse, in IEEE Trans. Ultrason. Ferroelectr. & Freq. Control: Invited Paper in Special Issue on Nanoscale Ferroelectrics, ed. By A. Gruverman, A.L. Kholkin (December 2006)

  8. A.L. Kholkin, A. Roelofs, S.V. Kalinin, A. Gruverman, in Electrical and Electromechanical Phenomena on the Nanoscale by Scanning Probe Microscopy, ed. By S.V. Kalinin, A. Gruverman (Springer, Berlin Heidelberg New York, 2006)

  9. C. Ahn, T. Tybell, L. Antognazza, K. Char, R.H. Hammond, M.R. Beasley, Ø. Fischer, J.-M. Triscone, Science 276, 1100 (1997)

    Article  CAS  Google Scholar 

  10. P. Güthner, K. Dransfeld, Appl. Phys. Lett. 61, 1137 (1992)

    Article  Google Scholar 

  11. K. Franke, Ferroelectr. Lett. 19, 35 (1995)

    Article  CAS  Google Scholar 

  12. C. Durkan, D.P. Chu, P. Migliorata, M.E. Welland, Appl. Phys. Lett. 76, 3666 (2000)

    Article  Google Scholar 

  13. D.V. Taylor, K.G. Brooks, A.L. Kholkin, D. Damjanovic, N. Setter, in Proc. of the 5th Int. Conf. on Electronic Ceramics and Applications, ed. by J.L. Baptista (Aveiro, Portugal, 1996), v. 1, p. 341

  14. A.L. Kholkin, E.K. Akdogan, A. Safari, P.-F. Chauvy, N. Setter, J. Appl. Phys. 89, 8066 (2001)

    Article  CAS  Google Scholar 

  15. A.L. Kholkin, E.L. Colla, A.K. Tagantsev, D.V. Taylor, N. Setter, Appl. Phys. Lett. 68, 2577 (1996)

    Article  CAS  Google Scholar 

  16. Y. Zhang, I.S. Baturin, E. Aulbach, D.C. Lupascu, A.L. Kholkin, V.Y. Shur, J. Rödel, Appl. Phys. Lett. 86, 012910 (2005)

    Article  Google Scholar 

  17. V.V. Shvartsman, N.A. Pertsev, J.M. Herrero, C. Zaldo, A.L. Kholkin, J. Appl. Phys. 97, 104105 (2005)

    Article  Google Scholar 

  18. M.I. Molotskii, M.M. Shvebelman, Philipp. Mag. 85, 1637 (2005)

    Article  CAS  Google Scholar 

  19. A.L. Kholkin, I.K. Bdikin, V.V. Shvartsman, A. Orlova, D.A. Kiselev, A.A. Bogomolov, Mater. Res. Soc. Proc. 838E, O7.6 (2005)

    Google Scholar 

  20. A.L. Kholkin, Ch. Wuethrich, D.V. Taylor, N. Setter, Rev. Sci. Instrum. 67, 1935 (1996)

    Article  CAS  Google Scholar 

  21. S.V. Kalinin, A. Gruverman, D.A. Bonnell, Appl. Phys. Lett. 85, 795 (2004)

    Article  CAS  Google Scholar 

  22. A. Wu, P.M. Vilarinho, V.V. Shvartsman, G. Suchaneck, A.L. Kholkin, Nanotechnology 16, 2587 – 2595 (2005)

    Article  CAS  Google Scholar 

  23. H. Maiwa, J.-P. Maria, J.A. Christman, S.-H. Kim, S.K. Streiffer, A.I. Kingon, Integr. Ferroelectr. 24, 139 (1999)

    Article  CAS  Google Scholar 

  24. A.L. Kholkin, Ferroelectrics 221, 219 (1999)

    Article  CAS  Google Scholar 

  25. A.L. Kholkin, Ferroelectrics 258, 209 (2001)

    Article  CAS  Google Scholar 

  26. V.V. Shvartsman, A.L. Kholkin, N.A. Pertsev, Appl. Phys. Lett. 81, 3025 (2002)

    Article  CAS  Google Scholar 

  27. A.L. Kholkin, K.G. Brooks, D.V. Taylor, S. Hiboux, N. Setter, Integr. Ferroelectr. 22, 525 (1998)

    Article  CAS  Google Scholar 

  28. G. Suchanek, G. Gerlach, Yu. Poplavko, A.I. Kosarev, A.N. Andronov, Mater. Res. Symp. Proc. 655, C.7.7.1 (2003)

    Google Scholar 

  29. W.L. Warren, D. Dimos, G.E. Pike, B.A. Tuttle, M.V. Raymond, R. Ramesh, J.T. Evans, Appl. Phys. Lett. 67, 866 (1995)

    Article  CAS  Google Scholar 

  30. A.L. Kholkin, N. Setter, Appl. Phys. Lett. 71, 2854 (1997)

    Article  CAS  Google Scholar 

  31. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)

    Article  CAS  Google Scholar 

  32. D. Damjanovic, D.V. Taylor, A.L. Kholkin, M. Demartin, K.G. Brooks, N. Setter, Mater. Res. Soc. Proc. 459, 15 (1997)

    CAS  Google Scholar 

  33. I.K. Bdikin, V.V. Shvartsman, S.-H. Kim, J. Manuel Herrero, A.L. Kholkin, Mater. Res. Soc. Symp. Proc. 784, C11.3 (2004)

    Google Scholar 

  34. R. Holland, IEEE Trans. Sonics Ultrason. SU-14, 18 (1967)

    Google Scholar 

  35. K. Hamano, Y. Yamaguchi, Ferroelectrics 42, 23 (1982)

    Google Scholar 

  36. D. Damjanovic, M. Demartin Maeder, P. Duran Martin, C. Voisard, N. Setter, J. Appl. Phys. 90, 5708 (2001)

    Article  CAS  Google Scholar 

  37. A.L. Kholkin, A.K. Tagantsev, E.L. Colla, D.V. Taylor, N. Setter, Integr. Ferroelectr. 15, 317 (1997)

    Article  CAS  Google Scholar 

  38. V. Shvartsman, A.L. Kholkin, Ferroelectrics 286, 291–299 (2003)

    Article  CAS  Google Scholar 

  39. J.I. Martin, M. Velez, J. Noguez, I.K. Schiller, Phys. Rev. Lett. 79, 229 (1997)

    Google Scholar 

  40. A.K. Tagantsev, I. Stolichnov, E.L. Colla, N. Setter, J. Appl. Phys. 90, 1387 (2001)

    Article  CAS  Google Scholar 

  41. V.V. Shvartsman, A.L. Kholkin, C. Verdier, D.C. Lupascu, J. Appl. Phys. 98, 094109 (2005)

    Article  Google Scholar 

  42. V.V. Shvartsman, A.L. Kholkin, Phys. Rev. B. 69, 014102 (2004)

    Article  Google Scholar 

  43. I.K. Bdikin, V.V. Shvartsman, A.L. Kholkin, Appl. Phys. Lett. 83, 4232 (2003)

    Article  CAS  Google Scholar 

  44. V.V. Shvartsman, A. Yu. Emelyanov, A. Safari, A.L. Kholkin, Appl. Phys.Lett. 81, 117 (2002)

    Article  CAS  Google Scholar 

  45. V.V. Shvartsman, A.L. Kholkin, M. Tyunina, J. Levoska, Appl. Phys. Lett. 86, 222907 (2005)

    Article  Google Scholar 

  46. V.V. Shvartsman, A. Orlova, D. Kiselev, A.A. Bogomolov, A. Sternberg Appl. Phys. Lett. 86, 202907 (2005)

    Article  Google Scholar 

  47. A.N. Salak, V.V. Shvartsman, M.P. Seabra, A.L. Kholkin, J. Phys. Cond. Matt. 16, 2785 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. N. Pertsev and Dr. S. Vakhrushev for continuing collaboration and numerous discussions regarding piezoelectric nonlinearity and PFM results in ferroelectric relaxors. We also express our gratitude to Prof. D. Lupascu for providing the samples and discussion of piezoelectric fatigue in ceramics. Prof. A. Safari and Dr. A. Sternberg are acknowledged for providing the samples used in this study. I. K. B. and D. A. K. acknowledge the financial support from the Portuguese Science and Technology Foundation (FCT) via grants SFRH/BPD/12031/2002 and SFRH/BD/22391/2005, respectively. Part of the work is performed within NOE ‘FAME’ (NMP3-CT-2004-500159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kholkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kholkin, A.L., Bdikin, I.K., Kiselev, D.A. et al. Nanoscale characterization of polycrystalline ferroelectric materials for piezoelectric applications. J Electroceram 19, 83–96 (2007). https://doi.org/10.1007/s10832-007-9045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9045-2

Keywords

Navigation