Skip to main content

Advertisement

Log in

Carbon nanotube-ceramic composites

  • Section 3: Functional Ceramics
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The effective utilization of CNTs in composite application depends strongly on the ability to disperse CNTs homogeneously throughout the matrix and the interfacial combination is necessary for improving the CNT-based composite properties. In our work, we used surfactant and acid treatment to modify the CNTs surface and then incorporated the functionalized CNTs into various ceramic matrices including oxide and nitride ceramics. The fabrication of ceramic nanoparticle-immobilized CNTs not only improves the homogeneous distribution of CNTs in the ceramic matrices, but also makes the combination between two phases more tight. Mechanical property measurements clealy reveal obvious enhancement confirming the fabrication of true CNT-based composite materials with improved toughness properties. The addition of 0.1 wt% CNTs in the alumina increased the fracture toughness by about 1.6 times from 3.7 to 4.9 MPa.m1/2. For 1 wt% CNTs/BaTiO3composite, the toughness value (1.65 MPa.m1/2) is about 2.4 times than that of pure BaTiO3(0.68 MPa.m1/2). For 5 wt% CNTs/TiN composite, the fracture toughness is 3.81 MPa.m1/2, which is about 1.6 times than that of pure TiN ceramic whose toughness is 2.45 MPa . m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Peigney, C. Laurent, O. Dumortier, and A. Rousset, J. Eur. Ceram. Soc., 18, 1995 (1998).

    Article  CAS  Google Scholar 

  2. G.D. Zhan, J.D. Kuntz, J.L. Wan, and A.K. Mukherjee, Nature Mater., 2, 38 (2003).

    Article  CAS  Google Scholar 

  3. R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, and D.H. Wu, J. Mater. Sci., 33, 5243 (1998).

    Article  CAS  Google Scholar 

  4. K.R. Han, C.S. Lim, and M.J. Hong, J. Am. Ceram. Soc., 79, 574 (1996).

    Article  CAS  Google Scholar 

  5. E.P. Luther, F.F. Lange, and D.S. Pearson, J. Am. Ceram. Soc., 78, 2009 (1995).

    Article  CAS  Google Scholar 

  6. G.L. Hwang and K.C. Hwang, J. Mater. Chem., 11, 1722 (2001).

    Article  CAS  Google Scholar 

  7. X. Gong, J. Liu, S. Baskaran, R.D. Voise, and J.S. Young, Chem. Mater., 12, 1049 (2000).

    Article  CAS  Google Scholar 

  8. J. Sun, L. Gao, and W. Li, Chem. Mater., 14, 5169 (2002).

    Article  CAS  Google Scholar 

  9. J. Sun and L. Gao, Carbon, 41, 1063 (2003).

    Article  CAS  Google Scholar 

  10. Q. Huang and L. Gao, J. Mater. Chem, 14, 2536 (2004).

    Article  CAS  Google Scholar 

  11. L.Q. Jiang and L. Gao, J. Mater. Chem, 15, 260 (2005).

    Article  CAS  Google Scholar 

  12. G.Z. Chen, M.S. Shaffer, D. Coleby, G. Dixon, W. Zhou, D.J. Fray, and A.H. Windle, Adv. Mater., 12, 522 (2000).

    Article  CAS  Google Scholar 

  13. S. Chang, R.H. Doremus, P.M. Ajayan, and R.W. Siegel, Ceram. Eng. Sci. Proc., 21, 653 (2000).

    Article  CAS  Google Scholar 

  14. 14 S. Ravindran, S. Chaudhary, B. Colburn, M. Ozkan, and C.S. Ozkan, Nano. Lett., 3, 447 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Jiang, L. & Sun, J. Carbon nanotube-ceramic composites. J Electroceram 17, 51–55 (2006). https://doi.org/10.1007/s10832-006-9935-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-9935-8

Keywords

Navigation