Skip to main content

Advertisement

Log in

A Bayesian compressed-sensing approach for reconstructing neural connectivity from subsampled anatomical data

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In recent years, the problem of reconstructing the connectivity in large neural circuits (“connectomics”) has re-emerged as one of the main objectives of neuroscience. Classically, reconstructions of neural connectivity have been approached anatomically, using electron or light microscopy and histological tracing methods. This paper describes a statistical approach for connectivity reconstruction that relies on relatively easy-to-obtain measurements using fluorescent probes such as synaptic markers, cytoplasmic dyes, transsynaptic tracers, or activity-dependent dyes. We describe the possible design of these experiments and develop a Bayesian framework for extracting synaptic neural connectivity from such data. We show that the statistical reconstruction problem can be formulated naturally as a tractable L 1-regularized quadratic optimization. As a concrete example, we consider a realistic hypothetical connectivity reconstruction experiment in C. elegans, a popular neuroscience model where a complete wiring diagram has been previously obtained based on long-term electron microscopy work. We show that the new statistical approach could lead to an orders of magnitude reduction in experimental effort in reconstructing the connectivity in this circuit. We further demonstrate that the spatial heterogeneity and biological variability in the connectivity matrix—not just the “average” connectivity—can also be estimated using the same method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Note that with i and j we can refer to both individual neurons as well as, more generally, entire classes of neurons, such as morphological or genetic classes, geometrically defined areas of the brain, etc., with respective changes in the interpretation of C ij as describing the count of synapses between such groups of neurons.

  2. The nonnegativity constraint M ij  ≥ 0 may be additionally enforced if the mean connectivity matrix M ij is expected to be nonnegative, e.g. if it describes the expected count of (unsigned) synapses between neurons, which clearly can not be negative. Such a constraint can significantly simplify the task of numerically solving Eq. (8) but, in general, nonnegativity cannot be imposed if the connectivity matrix is not expected to be sign definite, for example, such as if M ij describes the post-synaptic potential strength of neural connections in an excitatory and inhibitory network, as discussed in Section 4 below.

  3. To be precise, the LASSO problem corresponds to the case that the variance parameter \(\sigma_t^2\) does not depend on the mean parameter M. As discussed above, for some connectivity distributions p({C ij }) \(\sigma_t^2\) might depend weakly on M. For example, in the Poisson case, \(\sigma_t^2\) corresponds to a one-dimensional projection of the very high-dimensional parameter M. These cases can be handled with straightforward extensions of the LASSO approach; however, in this paper we will focus on the model with \(\sigma_t^2\) independent of M.

  4. In greater detail, a condition on the matrix \(\{e_{ij}^k\}\) sufficient to ensure exact reconstruction is the so-called Restricted Isometry Property (RIP): if a constant δ S exists such that \((1-\delta_S)\|{\bf x}_S\|^2_2 \leq \|{\bf E}{\bf x}_S\|^2_2 \leq (1+\delta_S)\|{\bf x}_S\|^2_2\) for every S-sparse vector x S , then the RIP holds for the matrix E. Although for a specific matrix E it is typically very difficult to verify RIP, RIP has been proven to hold with high probability in a number of classes of large random matrices (Romberg 2008; Candes and Wakin 2008).

  5. More specifically, the compressed sensing problem for a set of measurements O and sensing matrix E can be defined as follows (Candes and Wakin 2008; Romberg 2008):

    $$ \hat {\bf M}^{CS} = \arg \min \|{\bf M}\|_{1} ~ s.t. ~ {\bf O}={\bf E}\cdot{\bf M}. $$

    If the measurements O and the matrix \({\bf E}=\{e^k_{ij} \}\) are such that there exist an M * such that O = E·M * identically for that M *, then we can equivalently rewrite this optimization program as

    $$ \min \|{\bf M}\|_{1} ~ s.t. ~ ({\bf O} - {\bf E} \cdot {\bf M})^2 = 0. $$

    At the same time, we can use the standard Lagrange multipliers trick to rewrite the penalized LASSO optimization for the same problem,

    $$ \min \left[ ({\bf O}-{\bf E}\cdot{\bf M})^2 + \lambda \|{\bf M}\|_{1} \right], $$

    in the form of a constrained optimization,

    $$ \min \|{\bf M}\|_{1}\ s.t.\ ({\bf O}-{\bf E}\cdot{\bf M})^2 \leq \epsilon^2(\lambda), $$

    thus observing that \(\|\hat {\bf M}^{CS}-\hat {\bf M}^{LASSO}\|^2_{2}=O(\epsilon^2(\lambda))\). ϵ 2(λ) can be bounded by using the equivalence of the above two optimization problems so that \(\|\hat {\bf M}^{CS}-\hat {\bf M}^{LASSO}\|^2_{2} \leq B \|{\bf M}^*\|_{1} \lambda\), for a suitable constant B, and \(\hat {\bf M}^{LASSO}(\lambda)\rightarrow \hat {\bf M}^{CS}\) continuously as λ→0.

References

  • Amaral, D. G. & Witter, M. P. (1989). The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience, 31(3), 571–591.

    Article  PubMed  CAS  Google Scholar 

  • Bock, D. D., Lee, W. C., Kerlin, A. M., Andermann, M. L., Hood, G., Wetzel, A. W., et al. (2011). Network anatomy and in vivo physiology of visual cortical neurons. Nature, 471, 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Bohland, J., Wu, C., Barbas, H., Hermant, B., Bota, M., Breiter, H., et al. (2009). A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Computational Biology, 5, e1000334.

    Article  Google Scholar 

  • Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3, 1–122.

    Article  Google Scholar 

  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Oxford University Press.

  • Braitenberg, V., & Schuz, A. (1998). Cortex: Statistics and geometry of neuronal connectivity. Berlin: Springer.

    Google Scholar 

  • Briggman, K. L., & Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Current Opinions in Neurobiology, 16, 562.

    Article  CAS  Google Scholar 

  • Briggman, K. L., Helmstaedter, M., & Denk, W. (2011). Wiring specificity in the direction-selectivity circuit of the retina. Nature, 471, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Brodmann, K. (1994). Brodmann’s ‘Localisation in the Cerebral Cortex’. London, UK: Smith-Gordon.

    Google Scholar 

  • Broome, B. M., Jayaraman, V., & Laurent, G. (2006). Encoding and decoding of overlapping odor sequences. Neuron, 51, 467–482.

    Article  PubMed  CAS  Google Scholar 

  • Buhlmann, P., & van de Geer, S. (2011). Statistics for high-dimensional data. Springer.

  • Bureau, I., Shepherd, G. M., & Svoboda, K. (2004). Precise development of functional and anatomical columns in the neocortex. Neuron, 42(5), 789–801.

    Article  PubMed  CAS  Google Scholar 

  • Burton, B. (1999). Automated 3D reconstruction of neuronal structures from serial sections. PhD thesis, Texas A&M University.

  • Cajal, R. (1911). Histologie du systeme nerveux de l’homme et des vertebres, (Vol. 2). Madrid, Instituto Ramon y Cajal.

    Google Scholar 

  • Callaway, E., & Katz, L. (1993). Photostimulation using caged glutamate reveals functional circuitry in living brain slices. PNAS, 90, 7661–7665.

    Article  PubMed  CAS  Google Scholar 

  • Candes, E. J., & Romberg, J. (2005). Practical signal recovery from random projections. Wavelet applications in signal and image processing XI, Proc. (p. 5914).

  • Candes, E. J., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  Google Scholar 

  • Candes, E. J., & Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions on Information Theory, 56, 2053–2080.

    Article  Google Scholar 

  • Candes, E. J., & Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  • Chalasani, S. H., Chronis, N., Tsunozaki, M., Gray, J. M., Ramot, D., Goodman, M. B., et al. (2007). Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature, 450, 35.

    Article  Google Scholar 

  • Chen, Z., Putrino, D. F., Ghosh, S., Barbieri, R., & Brown, E. N. (2011). Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19, 121–135.

    Article  PubMed  Google Scholar 

  • Chiang, A.-S., Lin, C.-Y., Chuang, C.-C., Chang, H.-M., Hsieh, C.-H., Yeh, C.-W., et al. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current Biology, 21, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLOS Biol., 2, e329.

    Article  Google Scholar 

  • Donoho, D. (2006). Compressed sensing. IEEE Trans. on Information Theory, 52, 1289–1306.

    Article  Google Scholar 

  • Donoho, D., & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via L1 minimization. PNAS, 100, 2197–2202.

    Article  PubMed  CAS  Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 407–499.

    Article  Google Scholar 

  • Feinberg, E. H., Vanhoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., et al. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron, 57, 353–363.

    Article  PubMed  CAS  Google Scholar 

  • Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7, 397–416.

    Google Scholar 

  • Goldfarb, D., Ma, S., & Scheinberg, K. (2010). Fast alternating linearization methods for minimizing the sum of two convex functions. Columbia University IEOR Technical Report.

  • Grandvalet, Y., & Canu, S. (1998). Outcomes of the equivalence of adaptive ridge with least absolute shrinkage. In Proceedings of NIPS (pp. 445–451).

  • Gray, J. M., Hill, J. J., & Bargmann, C. I. (2005). A circuit for navigation in Caenorhabditis elegans. PNAS, 102, 3184.

    Article  PubMed  CAS  Google Scholar 

  • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C., Wedeen, V., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.

    Article  Google Scholar 

  • Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V., Meuli, R., et al. (2007). Mapping human whole-brain structural networks with Diffusion MRI. PLoS ONE, 2(7), e597.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. Springer.

  • Heim, R., Cubitt, A., & Tsien, R. (1995). Improved green fluorescence. Nature, 373, 663–664.

    Article  PubMed  CAS  Google Scholar 

  • Helmstaedter, M., Briggman, K. L., & Denk, W. (2008). 3D structural imaging of the brain with photons and electrons. Current Opinions in Neurobiology, 18, 633–641.

    Article  CAS  Google Scholar 

  • Helmstaedter, M., Briggman, K. L., & Denk, W. (2011). High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nature Neuroscience, 14, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  • Hu, T., Leonardo, A., & Chklovskii, D. (2009). Reconstruction of Sparse Circuits Using Multi-neuronal Excitation (RESCUME). In NIPS 2009, Poster.

  • Kandel, E. R., Schwartz, J. H., & Jessel, T. M. (2000). Principles of neural science. McGraw-Hill Professional.

  • Kelly, R. C., Kass, R. E., Smith, M. A., & Lee, T. S. (2010). Accounting for network effects in neuronal responses using l1 regularized point process models. Advances in Neural Information Processing Systems, 23, 1099–1107.

    PubMed  Google Scholar 

  • Kim, J., Zhao, T., Petralia, R. S., H, P., Myers, E., & Magee, J. (2011). mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nature Methods, 9, 96–102.

    Article  PubMed  Google Scholar 

  • Kim, Y., & Kim, J. (2004). Gradient lasso for feature selection. In ICML’04: Proceedings of the twenty-first international conference on machine learning (p. 60).

  • Kutner, M., Nachtsheim, C., Neter, J., & Li, W. (2005). Applied linear statistical models. McGraw-Hill.

  • Kuypers, H., & Ugolini, G. (1990). Viruses as transneuronal tracers. Trends in Neurosciences, 13, 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Lichtman, J. W., Livet, J., & Sanes, J. R. (2008). A technicolour approach to the connectome. Nature Reviews Neuroscience, 9, 417–422.

    Article  PubMed  CAS  Google Scholar 

  • Livet, J., Weissman, T., Kang, H., Draft, R., Lu, J., Bennis, R., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450, 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., Fiala, J. C., & Lichtman, J. W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS ONE, 4(5), e5655.

    Article  Google Scholar 

  • Luo, L., Callaway, E. M., & Svoboda, K. (2008). Genetic dissection of neural circuits. Neuron, 57, 634–660.

    Article  PubMed  CAS  Google Scholar 

  • Meinshausen, N., & Buehlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B, 72, 417–473.

    Article  Google Scholar 

  • Micheva, K. D., Busse, B., Weiler, N. C., O’Rourke, N., & Smith, S. J. (2010). Single-synapse analysis of a diverse synapse population: Proteomic imaging methods and markers. Neuron, 68, 639–653.

    Article  PubMed  CAS  Google Scholar 

  • Micheva, K. D., & Smith, S. J. (2007). Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron, 55(1), 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Mishchenko, Y. (2008). Strategies for identifying exact structure of neural circuits with broad light microscopy connectivity probes. Nature Precedings Preprint. http://precedings.nature.com/documents/2669.

  • Mishchenko, Y. (2009). Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs. Journal of Neuroscience Methods, 176, 276–289.

    Article  PubMed  Google Scholar 

  • Mishchenko, Y. (2010). On optical detection of densely labeled synapses in neuropil and mapping connectivity with combinatorially multiplexed fluorescent synaptic markers. PLOS ONE, 5, e8853.

    Article  Google Scholar 

  • Mishchenko, Y. (2011). Reconstruction of complete connectivity matrix for connectomics by sampling neural connectivity with fluorescent synaptic markers. Journal of Neuroscience Methods, 196, 289–302.

    Article  PubMed  CAS  Google Scholar 

  • Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K. M., & Chklovskii, D. B. (2010). Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron, 67, 1009–1020.

    Article  PubMed  CAS  Google Scholar 

  • Mishchenko, Y., Vogelstein, J., & Paninski, L. (2011). A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. Annals of Applied Statistics, 5, 1229–1261.

    Article  Google Scholar 

  • Ng, A. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance. ICML, 21, 78.

    Google Scholar 

  • Nikolenko, V., Poskanzer, K., & Yuste, R. (2007). Two-photon photostimulation and imaging of neural circuits. Nature Methods, 4, 943–950.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, M., Presnell, B., & Turlach, B. (2000a). On the LASSO and its dual. Journal of Computational and Graphical Statistics, 9, 319–337.

    Google Scholar 

  • Osborne, M., Presnell, B., & Turlach, B. A. (2000b). A new approach to variable selection in least squares problems. IMA Journal of Numerical Analysis, 20, 389–403.

    Article  Google Scholar 

  • Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103, 681–686.

    Article  CAS  Google Scholar 

  • Perkins, S., Lacker, K., & Theiler, J. (2003). Grafting: Fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research, 3, 1333–1356.

    Google Scholar 

  • Petreanu, L., Huber, D., Sobczyk, A., & Svoboda, K. (2007). Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neuroscience, 10, 663–668.

    Article  PubMed  CAS  Google Scholar 

  • Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S. (1904). La Textura del Sistema Nerviosa del Hombre y los Vertebrados. Moya.

  • Romberg, J. (2008). Imaging via compressive sampling. IEEE Signal Processing Magazine, 25(2), 14–20.

    Article  Google Scholar 

  • Sardy, S., Bruce, A., & Tseng, P. (1998). Block coordinate relaxation methods for nonparametric signal denoising with wavelet dictionaries. Technical report, Technical report, Seattle, WA.

  • Sato, T. R., Gray, N. W., Mainen, Z. F., & Svoboda, K. (2007). The functional microarchitecture of the mouse barrel cortex. PLoS Biology, 5(7), e189.

    Article  Google Scholar 

  • Shepherd, G. M., & Svoboda, K. (2005). Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. Journal of Neuroscience, 25, 5670–5679.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G. M. G., Pologruto, T. A., & Svoboda, K. (2003). Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron, 38, 277.

    Article  PubMed  CAS  Google Scholar 

  • Shevade, S. K., & Keerthi, S. S. (2003). A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19, 2246–2253.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. J. (2007). Circuit reconstruction tools today. Curr Opin Neurobiol, 17(5), 601–608. (Journal Article Review England)

    Article  PubMed  CAS  Google Scholar 

  • Song, S., Sjostrom, P. J., Reiql, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3, e68.

    Article  Google Scholar 

  • Stepanyants, A., Hirsch, J. A., Martinez, L. M., Kisvarday, Z. F., Ferecsko, A. S., & Chklovskii, D. B. (2008). Local potential connectivity in cat primary visual cortex. Cerebral Cortex, 18, 13–28.

    Article  PubMed  Google Scholar 

  • Stevenson, I. H., Rebesco, J. M., Hatsopoulos, N. G., Haga, Z., Miller, L. E., & Kording, K. P. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 203–213.

    Article  PubMed  Google Scholar 

  • Svoboda, K. (2007). Cajal 2.0 optical mapping project for mouse brain. In Janelia Farm Meeting on Neural Circuit Reconsruction, HHMI, 23–26 Sept 2007.

  • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B, 58, 267–288.

    Google Scholar 

  • Tipping, M. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211–244.

    Google Scholar 

  • Vanderbei, R. J. (2001). Linear programming: Foundations and extensions. International series in operations research and management science. New York: Springer.

    Google Scholar 

  • Westrum, L. E., & Blackstad, T. W. (1962). An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior, CA 1) with particular emphasis on synaptology. The Journal of Comparative Neurology, 119, 281–309.

    Article  PubMed  CAS  Google Scholar 

  • White, J., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of Royal Society London. Series B, Biological Sciences, 314(1165), 1–340.

    Article  CAS  Google Scholar 

  • Wickersham, I., Finke, S., Conzelmann, K.-K., & Callaway, E. (2007). Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods, 4, 47–49.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Ma, C., & Chalfie, M. (2004). Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell, 119, 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer, M., Gray, J. M., Pokala, N., Chang, A. J., Karow, D. S., Marletta, M. A., et al. (2009). Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron, 61, 865–879.

    Article  PubMed  CAS  Google Scholar 

  • Zou, H., Hastie, T., & Tibshirani, R. (2007). On the “degrees of freedom” of the Lasso. The Annals of Statistics, 35(5), 2173–2192.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. David Hall for his re-examination of the original print data from White et al. (1986), and for providing the statistics about the spatial distribution of synapses in C. elegans used in Section 3.4. This work was supported by an NSF CAREER grant, a McKnight Scholar award, and by NSF grant IIS-0904353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Mishchenko.

Additional information

Action Editor: Rob Kass

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishchenko, Y., Paninski, L. A Bayesian compressed-sensing approach for reconstructing neural connectivity from subsampled anatomical data. J Comput Neurosci 33, 371–388 (2012). https://doi.org/10.1007/s10827-012-0390-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0390-z

Keywords

Navigation