Skip to main content

Advertisement

Log in

Probabilistic modeling of selective stimulation of the human sciatic nerve with a flat interface nerve electrode

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Ankle control is critical to both standing balance and efficient walking. The hypothesis presented in this paper is that a Flat Interface Nerve Electrode (FINE) placed around the sciatic nerve with a fixed number of contacts at predetermined locations and without a priori knowledge of the nerve’s underlying neuroanatomy can selectively control each ankle motion. Models of the human sciatic nerve surrounded by a FINE of varying size were created and used to calculate the probability of selective activation of axons within any arbitrarily designated, contiguous group of fascicles. Simulations support the hypothesis and suggest that currently available implantable technology cannot selectively recruit each target plantar flexor individually but can restore plantar flexion or dorsiflexion from a site on the sciatic nerve without spillover to antagonists. Successful activation of individual ankle muscles in 90% of the population can be achieved by utilizing bipolar stimulation and/or by using a cuff with at least 20 contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta, A. M. (2002). Dissertation on musculoskeletal modeling of the shoulder and elbow in cervical spinal cord injury. Cleveland: Case Western Reserve University.

    Google Scholar 

  • Badia, J., Boretius, T., Andreu, D., Azevedo-Coste, C., Stieglitz, T., & Navarro, X. (2011). Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. Journal of Neural Engineering, 8(3), 036023. doi:10.1088/1741-2560/8/3/036023.

    Article  PubMed  Google Scholar 

  • Badia, J., Pascual-Font, A., Vivo, M., Udina, E., & Navarro, X. (2010). Topographical distribution of motor fascicles in the sciatic-tibial nerve of the rat. Muscle & Nerve, 42(2), 192–201. doi:10.1002/mus.21652.

    Article  Google Scholar 

  • Boretius, T., Badia, J., Pascual-Font, A., Schuettler, M., Navarro, X., Yoshida, K., et al. (2010). A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosensors and Bioelectronics, 26(1), 62–69. doi:10.1016/j.bios.2010.05.010.

    Article  PubMed  CAS  Google Scholar 

  • Botterman, B. R., & Cope, T. C. (1988). Maximum tension predicts relative endurance of fast-twitch motor units in the cat. Journal of Neurophysiology, 60(4), 1215–1226.

    PubMed  CAS  Google Scholar 

  • Boyd, I. A. (1968). The structure and innervation of mammalian muscle spindles. Electroencephalography and Clinical Neurophysiology, 25(4), 406.

    Google Scholar 

  • Branner, A., & Normann, R. A. (2000). A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Research Bulletin, 51(4), 293–306.

    Article  PubMed  CAS  Google Scholar 

  • Branner, A., Stein, R. B., Fernandez, E., Aoyagi, Y., & Normann, R. A. (2004). Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Transactions on Biomedical Engineering, 51(1), 146–157.

    Article  PubMed  Google Scholar 

  • Branner, A., Stein, R. B., & Normann, R. A. (2001). Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. Journal of Neurophysiology, 85(4), 1585–1594.

    PubMed  CAS  Google Scholar 

  • Butson, C. R., Miller, I. O., Normann, R. A., & Clark, G. A. (2011). Selective neural activation in a histologically derived model of peripheral nerve. Journal of Neural Engineering, 8(3), 036009. doi:10.1088/1741-2560/8/3/036009.

    Article  PubMed  Google Scholar 

  • CDC (2007). Prevalence of Stroke --- United States 2005. Morbidity and Mortality Weekly Report, 56(19), 469–474.

  • Choi, A. Q., Cavanaugh, J. K., & Durand, D. M. (2001). Selectivity of multiple-contact nerve cuff electrodes: a simulation analysis. IEEE Transactions on Biomedical Engineering, 48(2), 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., et al. (2007). OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54(11), 1940–1950.

    Article  PubMed  Google Scholar 

  • Deurloo, K. E., Holsheimer, J., & Bergveld, P. (2001). The effect of subthreshold prepulses on the recruitment order in a nerve trunk analyzed in a simple and a realistic volume conductor model. Biological Cybernetics, 85(4), 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Deurloo, K. E., Holsheimer, J., & Bergveld, P. (2003). Fascicular selectivity in transverse stimulation with a nerve cuff electrode: a theoretical approach. Neuromodulation, 6(4), 258–269.

    Article  PubMed  Google Scholar 

  • Deurloo, K. E., Holsheimer, J., & Boom, H. B. (1998). Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity. Medical & Biological Engineering & Computing, 36(1), 66–74.

    Article  CAS  Google Scholar 

  • Enoka, R. M., & Fuglevand, A. J. (2001). Motor unit physiology: some unresolved issues. Muscle & Nerve, 24(1), 4–17.

    Article  CAS  Google Scholar 

  • Fatone, S., Gard, S. A., & Malas, B. S. (2009). Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia. Archives of Physical Medicine and Rehabilitation, 90(5), 810–818. doi:10.1016/j.apmr.2008.11.012.

    Article  PubMed  Google Scholar 

  • Feiereisen, P., Duchateau, J., & Hainaut, K. (1997). Motor unit recruitment order during voluntary and electrically induced contractions in the tibialis anterior. Experimental Brain Research, 114(1), 117–123.

    Article  CAS  Google Scholar 

  • Garven, H. S., Gairns, F. W., & Smith, G. (1962). The nerve fibre populations of the nerves of the leg in chronic occlusive arterial disease in man. Scottish Medical Journal, 7, 250–265.

    PubMed  CAS  Google Scholar 

  • Gordon, D. A., Enoka, R. M., Karst, G. M., & Stuart, D. G. (1990). Force development and relaxation in single motor units of adult cats during a standard fatigue test. The Journal of Physiology, 421, 583–594.

    PubMed  CAS  Google Scholar 

  • Grill, W. M., Jr., & Mortimer, J. T. (1996). Quantification of recruitment properties of multiple contact cuff electrodes. IEEE Transactions on Rehabilitation Engineering, 4(2), 49–62.

    Article  PubMed  Google Scholar 

  • Grinberg, Y., Schiefer, M. A., Tyler, D. J., & Gustafson, K. J. (2008). Fascicular perineurium thickness, size, and position affect model predictions of neural excitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 572–581. doi:10.1109/TNSRE.2008.2010348.

    Article  PubMed  Google Scholar 

  • Gustafson, K. J., Grinberg, Y., Joseph, S., & Triolo, R. J. (2011). Human distal sciatic nerve fascicular anatomy: implicatoins for ankle control utilizing nerve cuff electrodes. Journal of Rehabilitation Research and Development, In Press.

  • Gustafson, K. J., Pinault, G. C., Neville, J. J., Syed, I., Davis, J. A., Jr., Jean-Claude, J., et al. (2009). Fascicular anatomy of human femoral nerve: implications for neural prostheses using nerve cuff electrodes. Journal of Rehabilitation Research and Development, 46(7), 973–984.

    Article  PubMed  Google Scholar 

  • Hansen, S., Hansen, N. L., Christensen, L. O., Petersen, N. T., & Nielsen, J. B. (2002). Coupling of antagonistic ankle muscles during co-contraction in humans. Experimental Brain Research, 146(3), 282–292.

    Article  CAS  Google Scholar 

  • Hoffer, J. A., Stein, R. B., Haugland, M. K., Sinkjaer, T., Durfee, W. K., Schwartz, A. B., et al. (1996). Neural signals for command control and feedback in functional neuromuscular stimulation: a review. Journal of Rehabilitation Research and Development, 33(2), 145–157.

    PubMed  CAS  Google Scholar 

  • Holmback, A. M., Porter, M. M., Downham, D., Andersen, J. L., & Lexell, J. (2003). Structure and function of the ankle dorsiflexor muscles in young and moderately active men and women. Journal of Applied Physiology, 95(6), 2416–2424.

    PubMed  Google Scholar 

  • Ito, J., Moriyama, H., Inokuchi, S., & Goto, N. (2003). Human lower limb muscles: an evaluation of weight and fiber size. Okajimas Folia Anatomica Japonica, 80(2–3), 47–55.

    Article  PubMed  Google Scholar 

  • Kernell, D., Eerbeek, O., & Verhey, B. A. (1983). Motor unit categorization on basis of contractile properties: an experimental analysis of the composition of the cat’s m. peroneus longus. Experimental Brain Research, 50(2–3), 211–219.

    CAS  Google Scholar 

  • Kobetic, R., Triolo, R. J., Uhlir, J. P., Bieri, C., Wibowo, M., Polando, G., et al. (1999). Implanted functional electrical stimulation system for mobility in paraplegia: a follow-up case report. IEEE Transactions on Rehabilitation Engineering, 7(4), 390–398.

    Article  PubMed  CAS  Google Scholar 

  • Koole, P., Holsheimer, J., Struijk, J. J., & Verloop, A. J. (1997). Recruitment characteristics of nerve fascicles stimulated by a multigroove electrode. IEEE Transactions on Rehabilitation Engineering, 5(1), 40–50.

    Article  PubMed  CAS  Google Scholar 

  • Lertmanorat, Z., Gustafson, K. J., & Durand, D. M. (2006). Electrode array for reversing the recruitment order of peripheral nerve stimulation: experimental studies. Annals of Biomedical Engineering, 34(1), 152–160. doi:10.1007/s10439-005-9012-5.

    Article  PubMed  Google Scholar 

  • Leventhal, D. K., & Durand, D. M. (2003). Subfascicle stimulation selectivity with the flat interface nerve electrode. Annals of Biomedical Engineering, 31(6), 643–652.

    Article  PubMed  Google Scholar 

  • Macefield, V. G., Fuglevand, A. J., & Bigland-Ritchie, B. (1996). Contractile properties of single motor units in human toe extensors assessed by intraneural motor axon stimulation. Journal of Neurophysiology, 75(6), 2509–2519.

    PubMed  CAS  Google Scholar 

  • McDonnall, D., Clark, G. A., & Normann, R. A. (2004a). Interleaved, multisite electrical stimulation of cat sciatic nerve produces fatigue-resistant, ripple-free motor responses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(2), 208–215.

    Article  PubMed  Google Scholar 

  • McDonnall, D., Clark, G. A., & Normann, R. A. (2004b). Selective motor unit recruitment via intrafascicular multielectrode stimulation. Canadian Journal of Physiology and Pharmacology, 82(8–9), 599–609.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87(2), 995–1006.

    PubMed  Google Scholar 

  • Moss, C. L. (1992). Comparison of the histochemical and contractile properties of human triceps surae. Medical & Biological Engineering & Computing, 30(6), 600–604.

    Article  CAS  Google Scholar 

  • Nannini, N., & Horch, K. (1991). Muscle recruitment with intrafascicular electrodes. IEEE Transactions on Biomedical Engineering, 38(8), 769–776.

    Article  PubMed  CAS  Google Scholar 

  • Nobunaga, A. I., Go, B. K., & Karunas, R. B. (1999). Recent demographic and injury trends in people served by the Model Spinal Cord Injury Care Systems. Archives of Physical Medicine and Rehabilitation, 80(11), 1372–1382.

    Article  PubMed  CAS  Google Scholar 

  • O’Keeffe, D. T., & Lyons, G. M. (2002). A versatile drop foot stimulator for research applications. Medical Engineering & Physics, 24(3), 237–242.

    Article  Google Scholar 

  • Ohira, Y., Yoshinaga, T., Nonaka, I., Ohara, M., Yoshioka, T., Yamashita-Goto, K., et al. (2000). Histochemical responses of human soleus muscle fibers to long-term bedrest with or without countermeasures. The Japanese Journal of Physiology, 50(1), 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Orive, J., & Durand, D. M. (2000). Modeling study of peripheral nerve recording selectivity. IEEE Transactions on Rehabilitation Engineering, 8(3), 320–329.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, E. J., Izad, O., & Tyler, D. J. (2011). Predicting axon activation using extracellular field shape characteristics. Journal of Neural Engineering, Accepted Pending Revisions.

  • Polasek, K. (2007). Clincial implementation of nerve cuff electrodes for an upper extremity neuroprosthesis. Dissertation, Case Western Reserve University, Cleveland.

  • Polasek, K. H., Schiefer, M. A., Pinault, G. C., Triolo, R. J., & Tyler, D. J. (2009). Intraoperative evaluation of the spiral nerve cuff electrode on the femoral nerve trunk. Journal of Neural Engineering, 6(6), 066005. doi:10.1088/1741-2560/6/6/066005.

    Article  PubMed  CAS  Google Scholar 

  • Powers, R. K., & Binder, M. D. (1991). Summation of motor unit tensions in the tibialis posterior muscle of the cat under isometric and nonisometric conditions. Journal of Neurophysiology, 66(6), 1838–1846.

    PubMed  CAS  Google Scholar 

  • Ranck, J. B., Jr., & Bement, S. L. (1965). The specific impedance of the dorsal columns of cat: an inisotropic medium. Experimental Neurology, 11, 451–463.

    Article  PubMed  Google Scholar 

  • Richardson, A. G., McIntyre, C. C., & Grill, W. M. (2000). Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath. Medical & Biological Engineering & Computing, 38(4), 438–446.

    Article  CAS  Google Scholar 

  • Schiefer, M. A., Polasek, K. H., Triolo, R. J., Pinault, G. C., & Tyler, D. J. (2010). Selective stimulation of the human femoral nerve with a flat interface nerve electrode. Journal of Neural Engineering, 7(2), 26006. doi:10.1088/1741-2560/7/2/026006.

    Article  PubMed  CAS  Google Scholar 

  • Schiefer, M. A., Triolo, R. J., & Tyler, D. J. (2008). A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(2), 195–204. doi:10.1109/TNSRE.2008.918425.

    Article  PubMed  Google Scholar 

  • Sharma, M., Marsolais, E. B., Polando, G., Triolo, R. J., Davis, J. A., Jr., Bhadra, N., et al. (1998). Implantation of a 16-channel functional electrical stimulation walking system. Clinical Orthopaedics and Related Research, 347, 236–242.

    Article  PubMed  Google Scholar 

  • Sinkjaer, T., Nielsen, J., & Toft, E. (1995). Mechanical and electromyographic analysis of reciprocal inhibition at the human ankle joint. Journal of Neurophysiology, 74(2), 849–855.

    PubMed  CAS  Google Scholar 

  • Sladjana, U. Z., Ivan, J. D., & Bratislav, S. D. (2008). Microanatomical structure of the human sciatic nerve. Surgical and Radiologic Anatomy, 30(8), 619–626. doi:10.1007/s00276-008-0386-6.

    Article  PubMed  Google Scholar 

  • Sweeney, J. D., Ksienski, D. A., & Mortimer, J. T. (1990). A nerve cuff technique for selective excitation of peripheral nerve trunk regions. IEEE Transactions on Biomedical Engineering, 37(7), 706–715.

    Article  PubMed  CAS  Google Scholar 

  • Tarler, M. D., & Mortimer, J. T. (2003). Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(3), 227–235.

    Article  PubMed  Google Scholar 

  • Tarler, M. D., & Mortimer, J. T. (2004). Selective and independent activation of four motor fascicles using a four contact nerve-cuff electrode. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(2), 251–257.

    Article  PubMed  Google Scholar 

  • Tarler, M. D., & Mortimer, J. T. (2007). Linear summation of torque produced by selective activation of two motor fascicles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(1), 104–110.

    Article  PubMed  Google Scholar 

  • Taylor, P. N., Burridge, J. H., Dunkerley, A. L., Wood, D. E., Norton, J. A., Singleton, C., et al. (1999). Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Archives of Physical Medicine and Rehabilitation, 80(12), 1577–1583.

    Article  PubMed  CAS  Google Scholar 

  • The National Institute of Neurological Disorders and Stroke (1996). Multiple Sclerosis: Hope Through Research, NINDS Publication #96–75.

  • The National Institute of Neurological Disorders and Stroke (2009). Cerebral Palsy: Hope Through Research. NINDS Publication #10–159.

  • Tyler, D. J., & Durand, D. M. (2002). Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(4), 294–303.

    Article  PubMed  Google Scholar 

  • Tyler, D. J., & Durand, D. M. (2003). Chronic response of the rat sciatic nerve to the flat interface nerve electrode. Annals of Biomedical Engineering, 31(6), 633–642.

    Article  PubMed  Google Scholar 

  • Veltink, P. H., van Veen, B. K., Struijk, J. J., Holsheimer, J., & Boom, H. B. (1989). A modeling study of nerve fascicle stimulation. IEEE Transactions on Biomedical Engineering, 36(7), 683–692. doi:10.1109/10.32100.

    Article  PubMed  CAS  Google Scholar 

  • Veraart, C., Grill, W. M., & Mortimer, J. T. (1993). Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Transactions on Biomedical Engineering, 40(7), 640–653.

    Article  PubMed  CAS  Google Scholar 

  • Ward, S. R., Eng, C. M., Smallwood, L. H., & Lieber, R. L. (2009). Are current measurements of lower extremity muscle architecture accurate? Clinical Orthopaedics and Related Research, 467(4), 1074–1082. doi:10.1007/s11999-008-0594-8.

    Article  PubMed  Google Scholar 

  • Weerasuriya, A., Spangler, R. A., Rapoport, S. I., & Taylor, R. E. (1984). AC impedance of the perineurium of the frog sciatic nerve. Biophysical Journal, 46(2), 167–174. doi:10.1016/S0006-3495(84)84009-6.

    Article  PubMed  CAS  Google Scholar 

  • Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.). Hoboken: John Wiley & Sons, Inc.

    Book  Google Scholar 

  • Wodlinger, B., & Durand, D. M. (2009). Localization and recovery of peripheral neural sources with beamforming algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(5), 461–468. doi:10.1109/TNSRE.2009.2034072.

    Article  PubMed  Google Scholar 

  • Woock, J. P., Yoo, P. B., & Grill, W. M. (2010). Finite element modeling and in vivo analysis of electrode configurations for selective stimulation of pudendal afferent fibers. BMC Urology, 10, 11. doi:10.1186/1471-2490-10-11.

    Article  PubMed  Google Scholar 

  • Yoo, P. B., Sahin, M., & Durand, D. M. (2004). Selective stimulation of the canine hypoglossal nerve using a multi-contact cuff electrode. Annals of Biomedical Engineering, 32(4), 511–519.

    Article  PubMed  Google Scholar 

  • Yoshida, K., & Horch, K. (1993). Selective stimulation of peripheral nerve fibers using dual intrafascicular electrodes. IEEE Transactions on Biomedical Engineering, 40(5), 492–494.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health R01-EB1899, Training Grant TRN505006, and by the Advanced Platform Technology (APT) Center of Excellence of the U.S. Department of Veterans Affairs (A6791C). The authors would like to thank Dr. Musa Audu and Mr. Arden Bartlett for facilitating parallel simulations, to Dr. Kenneth Gustafson for providing histology, and Dr. Michael Schiefer for running logistical regressions on approximately 60,000,000 data points.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Schiefer.

Additional information

Action Editor: K. Sigvardt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiefer, M.A., Tyler, D.J. & Triolo, R.J. Probabilistic modeling of selective stimulation of the human sciatic nerve with a flat interface nerve electrode. J Comput Neurosci 33, 179–190 (2012). https://doi.org/10.1007/s10827-011-0381-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0381-5

Keywords

Navigation