Skip to main content
Log in

Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4×5×7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See Hunt et al. (2009, unpublished). Available at http://www.neuroinf.pl/Members/danek/homepage/preprints/Article.2009-10-22.4312

  2. STICA software available at http://jim-stone.staff.shef.ac.uk/

  3. The package is available at http://www.cis.hut.fi/jhimberg/icasso/

  4. http://www.neuroinf.pl/Members/szleski/iCSD_data/ICviewer

  5. http://www.neuroinf.pl/Members/szleski/iCSD_data/ICviewer

  6. The single exception is Rat 6, where the recording grid encompassed the border with cortical tissue. For this rat we found three strong cortical components with long latencies accompanied by moderate strength components typically located at somatosensory thalamus.

References

  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.

    Article  CAS  PubMed  Google Scholar 

  • Comon, P. (1994). Independent Component Analysis, a new concept? Signal Processing, 36(3), 287–314.

    Article  Google Scholar 

  • de Solages, C., Szapiro, G., Brunel, N., Hakim, V., Isope, P., Buisseret, P., et al. (2008). High-frequency organization and synchrony of activity in the Purkinje cell layer of the cerebellum. Neuron, 58(5), 775–788.

    Article  PubMed  Google Scholar 

  • Diamond, M. E., Armstrong-James, M., & Ebner, F. F. (1992). Somatic sensory responses in the rostral sector of the posterior group (pom) and in the ventral posterior medial nucleus (vpm) of the rat thalamus. The Journal of Comparative Neurology, 318(4), 462–476.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, J. A., & Nicholson, C. (1975). Experimental optimization of current source-density technique for anuran cerebellum. Journal of Neurophysiology, 38(2), 369–382.

    CAS  PubMed  Google Scholar 

  • Himberg, J., Hyvärinen, A., & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage, 22(3), 1214–1222.

    Article  PubMed  Google Scholar 

  • Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904–1911.

    Article  PubMed  Google Scholar 

  • Land, P. W., Buffer, S. A., & Yaskosky, J. D. (1995). Barreloids in adult rat thalamus: Three-dimensional architecture and relationship to somatosensory cortical barrels. The Journal of Comparative Neurology, 355(4), 573–588.

    Article  CAS  PubMed  Google Scholar 

  • Łęski, S., Wójcik, D. K., Tereszczuk, J., Świejkowski, D. A., Kublik, E., & Wróbel, A. (2007). Inverse Current-Source Density method in 3D: Reconstruction fidelity, boundary effects, and influence of distant sources. Neuroinformatics, 5(4), 207–222.

    Article  PubMed  Google Scholar 

  • Lin, B., Colgin, L. L., Brücher, F. A., Arai, A. C., & Lynch, G. (2002). Interactions between recording technique and AMPA receptor modulators. Brain Research, 955(1–2), 164–173.

    Article  CAS  PubMed  Google Scholar 

  • Lipton, M. L., Fu, K. M. G., Branch, C. A., & Schroeder, C. E. (2006). Ipsilateral hand input to area 3b revealed by converging hemodynamic and electrophysiological analyses in macaque monkeys. Journal of Neuroscience, 26(1), 180–185.

    Article  CAS  PubMed  Google Scholar 

  • Lo, F. S., Guido, W., & Erzurumlu, R. S. (1999). Electrophysiological properties and synaptic responses of cells in the trigeminal principal sensory nucleus of postnatal rats. Journal of Neurophysiology, 82(5), 2765–2775.

    CAS  PubMed  Google Scholar 

  • McKeown, M. J., Makeig, S., Brown, G. G., Jung, T., Kindermann, S. S., Bell, A. J., et al. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6(3), 160–188.

    Article  CAS  PubMed  Google Scholar 

  • Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65(1), 37–100.

    CAS  PubMed  Google Scholar 

  • Nicholson, C., & Freeman, J. A. (1975). Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology, 38(2), 356–368.

    CAS  PubMed  Google Scholar 

  • Nicolelis, M. A., Chapin, J. K., & Lin, R. C. (1992). Somatotopic maps within the zona incerta relay parallel gabaergic somatosensory pathways to the neocortex, superior colliculus, and brainstem. Brain Research, 577(1), 134–141.

    Article  CAS  PubMed  Google Scholar 

  • Novak, J. L., & Wheeler, B. C. (1989). Two-dimensional current source density analysis of propagation delays for components of epileptiform bursts in rat hippocampal slices. Brain Research, 497(2), 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Nunez, P. L., & Srinivasan, R. (2005). Electric fields of the brain: The neurophysics of EEG. Oxford: Oxford University Press.

    Google Scholar 

  • Paxinos, G., & Watson, C. (1996). The rat brain in stereotaxic coordinates (Compact 3rd ed.). London: Academic Press.

    Google Scholar 

  • Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates (6th ed.). London: Academic Press.

    Google Scholar 

  • Pettersen, K. H., Devor, A., Ulbert, I., Dale, A. M., & Einevoll, G. T. (2006). Current-source density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity discontinuities. Journal of Neuroscience Methods, 154(1–2), 116–133.

    Article  PubMed  Google Scholar 

  • Pierret, T., Lavallée, P., & Deschênes, M. (2000). Parallel streams for the relay of vibrissal information through thalamic barreloids. Journal of Neuroscience, 20(19), 7455–7462.

    CAS  PubMed  Google Scholar 

  • Rajkai, C., Lakatos, P., Chen, C. M., Pincze, Z., Karmos, G., & Schroeder, C. E. (2008). Transient cortical excitation at the onset of visual fixation. Cerebral Cortex, 18(1), 200–209.

    Article  PubMed  Google Scholar 

  • Reidl, J., Starke, J., Omer, D. B., Grinvald, A., & Spors, H. (2007). Independent component analysis of high-resolution imaging data identifies distinct functional domains. Neuroimage, 34(1), 94–108.

    Article  PubMed  Google Scholar 

  • Saleem, A. B., Krapp, H. G., & Schultz, S. R. (2008). Receptive field characterization by spike-triggered independent component analysis. Journal of Vision, 8(13), 2.1–216.

    Article  Google Scholar 

  • Schiessl, I., Stetter, M., Mayhew, J. E., McLoughlin, N., Lund, J. S., & Obermayer, K. (2000). Blind signal separation from optical imaging recordings with extended spatial decorrelation. IEEE Transactions on Biomedical Engineering, 47(5), 573–577.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, C. E., Tenke, C. E., & Givre, S. J. (1992) Subcortical contributions to the surface-recorded flash-vep in the awake macaque. Electroencephalography and Clinical Neurophysiology, 84(3), 219–231.

    Article  CAS  PubMed  Google Scholar 

  • Shimono, K., Brucher, F., Granger, R., Lynch, G., & Taketani, M. (2000) Origins and distribution of cholinergically induced beta rhythms in hippocampal slices. Journal of Neuroscience, 20(22), 8462–8473.

    CAS  PubMed  Google Scholar 

  • Stoelzel, C. R., Bereshpolova, Y., & Swadlow, H. A. (2009). Stability of thalamocortical synaptic transmission across awake brain states. Journal of Neuroscience, 29(21), 6851–6859.

    Article  CAS  PubMed  Google Scholar 

  • Stone, J. V., & Porrill, J. (1999). Regularisation using spatiotemporal independence and predictability. Computational Neuroscience Report 201, Psychology Department, Sheffield University.

  • Stone J. V., Porrill J., Porter N. R., & Wilkinson I. D. (2002). Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions. Neuroimage, 15(2), 407–421.

    Article  CAS  PubMed  Google Scholar 

  • Tanskanen, J. M. A., Mikkonen, J. E., & Penttonen, M. (2005). Independent component analysis of neural populations from multielectrode field potential measurements. Journal of Neuroscience Methods, 145(1–2), 213–232.

    Article  PubMed  Google Scholar 

  • Tenke, C. E., Schroeder, C. E., Arezzo, J. C., & Vaughan, H. G. (1993). Interpretation of high-resolution current source density profiles: A simulation of sublaminar contributions to the visual evoked potential. Experimental Brain Research, 94(2), 183–192.

    Article  CAS  Google Scholar 

  • Urbain, N., & Deschênes, M. (2007). A new thalamic pathway of vibrissal information modulated by the motor cortex. Journal of Neuroscience, 27(45), 12407–12412.

    Article  CAS  PubMed  Google Scholar 

  • Vaknin, G., DiScenna, P. G., & Teyler, T. J. (1988). A method for calculating current source density (CSD) analysis without resorting to recording sites outside the sampling volume. Journal of Neuroscience Methods, 24(2), 131–135.

    Article  CAS  PubMed  Google Scholar 

  • Veinante, P., & Deschênes, M. (1999). Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. Journal of Neuroscience, 19(12), 5085–5095.

    CAS  PubMed  Google Scholar 

  • Waite, P. (2004). Trigeminal sensory system. In G. Paxinos (Ed.), The rat nervous system (pp. 817–851). Amsterdam: Elsevier.

    Google Scholar 

  • Wójcik, D. K., & Łęski, S. (2009). Current source density reconstruction from incomplete data. Neural Computation. doi:10.1162/neco.2009.07-08-831.

    PubMed  Google Scholar 

  • Ylinen, A., Bragin, A., Nádasdy, Z., Jandó, G., Szabó, I., Sik, A., et al. (1995). Sharp wave-associated high-frequency oscillation (200 hz) in the intact hippocampus: Network and intracellular mechanisms. Journal of Neuroscience, 15(1), 30–46.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szymon Łęski.

Additional information

Action Editor: T. Sejnowski

This work was partly financed from the Polish Ministry of Science and Higher Education grants PBZ/MNiSW/07/2006/11 and 46/N-COST/2007/0.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 508 kb).

Abbreviations

Abbreviations

APT:

anterior pretectal nucleus

DLG:

dorsal lateral geniculate nucleus

Hipp:

hippocampus

LD:

latero-dorsal thalamic nucleus

LP:

lateral posterior thalamic nucleus

MGM:

medial geniculate nucleus, medial part

Po:

posterior thalamic nuclear group

Rt:

reticular thalamic nucleus

SN:

substantia nigra

VPM:

ventral postero-medial thalamic nucleus

VLG:

ventral lateral geniculate nucleus

ZI:

zona incerta

ZIc:

caudal part of zona incerta

cp:

cerebral peduncle

ic:

internal capsule

ml:

medial lemniscus

opt:

optic tract

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łęski, S., Kublik, E., Świejkowski, D.A. et al. Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density. J Comput Neurosci 29, 459–473 (2010). https://doi.org/10.1007/s10827-009-0203-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0203-1

Keywords

Navigation