Skip to main content
Log in

Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: A multicompartmental model study

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Magnocellular neuroendocrine cells (MNCs) of the hypothalamus synthesize the neurohormones vasopressin and oxytocin, which are released into the blood and exert a wide spectrum of actions, including the regulation of cardiovascular and reproductive functions. Vasopressin- and oxytocin-secreting neurons have similar morphological structure and electrophysiological characteristics. A realistic multicompartmental model of a MNC with a bipolar branching structure was developed and calibrated based on morphological and in vitro electrophysiological data in order to explore the roles of ion currents and intracellular calcium dynamics in the intrinsic electrical MNC properties. The model was used to determine the likely distributions of ion conductances in morphologically distinct parts of the MNCs: soma, primary dendrites and secondary dendrites. While reproducing the general electrophysiological features of MNCs, the model demonstrates that the differential spatial distributions of ion channels influence the functional expression of MNC properties, and reveals the potential importance of dendritic conductances in these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abel, H. J., Lee, J. C., Callaway, J. C., & Foehring, R. C. (2004). Relationships between intracellular calcium and afterhyperpolarizations in neocortical pyramidal neurons. Journal of Neurophysiology, 91, 324–335.

    PubMed  CAS  Google Scholar 

  • Achard, P., & De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. PLoS Comput Biol., 2, e94.

    PubMed  Google Scholar 

  • An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., et al. (2000). Modulation of A-type potassium channels by a family of calcium sensors. Nature, 403, 553–556.

    PubMed  CAS  Google Scholar 

  • Andrew, R. D., & Dudek, F. E. (1984a). Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. Journal of Neurophysiology, 51, 552–566.

    PubMed  CAS  Google Scholar 

  • Andrew, R. D., & Dudek, F. E. (1984b). Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus. Journal of Physiology, 353, 171–185.

    PubMed  CAS  Google Scholar 

  • Aoyagi, T., Kang, Y., Terada, N., Kaneko, T., & Fukai, T. (2002). The role of Ca2+-dependent cationic current in generating gamma frequency rhythmic bursts: Modeling study. Neuroscience, 115, 1127–1138.

    PubMed  CAS  Google Scholar 

  • Armstrong, W. E. (1995). Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Progress in Neurobiology, 47, 291–339.

    PubMed  CAS  Google Scholar 

  • Armstrong, W. E., Smith, B. N., & Tian, M. (1994). Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. Journal of Physiology, 475, 115–128.

    PubMed  CAS  Google Scholar 

  • Armstrong, W. E., & Stern, J. E. (1997). Electrophysiological and morphological characteristics of neurons in perinuclear zone of supraoptic nucleus. Journal of Neurophysiology, 78, 2427–2437.

    PubMed  CAS  Google Scholar 

  • Armstrong, W. E., & Stern, J. E. (1998). Electrophysiological distinctions between oxytocin and vasopressin neurons in the supraoptic nucleus. Advances in Experimental Medicine and Biology, 449, 67–77.

    PubMed  CAS  Google Scholar 

  • Bains, J. S. (2002). Dendritic action potentials in magnocellular neurons. Progress in Brain Research, 139, 225–234.

    Article  PubMed  CAS  Google Scholar 

  • Bischofberger, J., & Jonas, P. (1997). Action potential propagation into the presynaptic dendrites of rat mitral cells. Journal of Physiology, 504, 359–365.

    PubMed  CAS  Google Scholar 

  • Boudaba, C., Di, S., & Tasker, J. G. (2003). Presynaptic noradrenergic regulation of glutamate inputs to hypothalamic magnocellular neurones. Journal of Neuroendocrinology, 15, 803–810.

    Article  PubMed  CAS  Google Scholar 

  • Bourque, C. W. (1986). Calcium-dependent spike after-current induces burst firing in magnocellular neurosecretory cells. Neuroscience Letters, 70, 204–209.

    PubMed  CAS  Google Scholar 

  • Bourque, C. W. (1988). Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal of Physiology, 397, 331–347.

    PubMed  CAS  Google Scholar 

  • Bourque, C. W., & Brown, D. A. (1987). Apamin and d-tubocurarine block the afterhyperpolarization of rat supraoptic neurosecretory neurons. Neuroscience Letters, 82, 185–190.

    PubMed  CAS  Google Scholar 

  • Bourque, C. W., Randle, J. C., & Renaud, L. P. (1985). Calcium-dependent potassium conductance in rat supraoptic nucleus neurosecretory neurons. Journal of Neurophysiology, 54, 1375–1382.

    PubMed  CAS  Google Scholar 

  • Bourque, C. W., & Renaud, L. P. (1985). Activity dependence of action potential duration in rat supraoptic neurosecretory neurons recorded in vitro. Journal of Physiology, 363, 429–439.

    PubMed  CAS  Google Scholar 

  • Brimble, M. J., & Dyball, R. E. (1977). Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. Journal of Physiology, 271, 253–271.

    PubMed  CAS  Google Scholar 

  • Brown, C. H., & Bourque, C. W. (2004). Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal of Physiology, 557, 949–960.

    PubMed  CAS  Google Scholar 

  • Brown, C. H., Leng, G., Ludwig, M., & Bourque, C. W. (2006). Endogenous activation of supraoptic nucleus kappa-opioid receptors terminates spontaneous phasic bursts in rat magnocellular neurosecretory cells. Journal of Neurophysiology, 95, 3235–3244.

    PubMed  CAS  Google Scholar 

  • Callaway, J. C., & Ross, W. N. (1995). Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 74, 1395–1403.

    PubMed  CAS  Google Scholar 

  • Canavier, C. C. (1999). Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: A computational approach. Journal of Computational Neuroscience, 6, 49–69.

    PubMed  CAS  Google Scholar 

  • Chevaleyre, V., Moos, F. C., & Desarmenien, M. G. (2001). Correlation between electrophysiological and morphological characteristics during maturation of rat supraoptic neurons. European Journal of Neuroscience, 13, 1136–1146.

    PubMed  CAS  Google Scholar 

  • Dopico, A. M., Widmer, H., Wang, G., Lemos, J. R., & Treistman, S. N. (1999). Rat supraoptic magnocellular neurones show distinct large conductance, Ca2+-activated K+ channel subtypes in cell bodies versus nerve endings. Journal of Physiology, 519, 101–114.

    PubMed  CAS  Google Scholar 

  • Duprat, F., Lesage, F., Fink, M., Reyes, R., Heurteaux, C., & Lazdunski, M. (1997). TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO Journal, 16, 5464–5471.

    PubMed  CAS  Google Scholar 

  • Egorov, A. V., Hamam, B. N., Fransen, E., Hasselmo, M. E., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420, 173–178.

    PubMed  CAS  Google Scholar 

  • Erickson, K. R., Ronnekleiv, O. K., & Kelly, M. J. (1993). Role of a T-type calcium current in supporting a depolarizing potential, damped oscillations, and phasic firing in vasopressinergic guinea pig supraoptic neurons. Neuroendocrinology, 57, 789–800.

    PubMed  CAS  Google Scholar 

  • Fisher, T. E., & Bourque, C. W. (1995). Voltage-gated calcium currents in the magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal of Physiology, 486, 571–580.

    PubMed  CAS  Google Scholar 

  • Fisher, T. E., Voisin, D. E., & Bourque, C. W. (1998). Density of transient K+ current influences excitability in acutely isolated vasopressin and oxytocin neurones of rat hypothalamus. Journal of Physiology, 511, 423–432.

    PubMed  CAS  Google Scholar 

  • Foehring, R. C., & Armstrong, W. E. (1996). Pharmacological dissection of high-voltage-activated Ca2+ current types in acutely dissociated rat supraoptic magnocellular neurons. Journal of Neurophysiology, 76, 977–983.

    PubMed  CAS  Google Scholar 

  • Ghamari-Langroudi, M., & Bourque, C. W. (2002). Flufenamic acid blocks depolarizing afterpotentials and phasic firing in rat supraoptic neurones. Journal of Physiology, 545, 537–542.

    PubMed  CAS  Google Scholar 

  • Ghamari-Langroudi, M., & Bourque, C. W. (2004). Muscarinic receptor modulation of slow afterhyperpolarization and phasic firing in rat supraoptic nucleus neurons. Journal of Neuroscience, 24, 7718–7726.

    PubMed  CAS  Google Scholar 

  • Golding, N. L., & Spruston, N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron, 21, 1189–1200.

    PubMed  CAS  Google Scholar 

  • Goldstein, S. A., Bockenhauer, D., O’Kelly, I., & Zilberberg, N. (2001). Potassium leak channels and the KCNK family of two-P-domain subunits. Nature Reviews. Neuroscience, 2, 175–184, 2001.

    PubMed  CAS  Google Scholar 

  • Greffrath, W., Magerl, W., Disque-Kaiser, U., Martin, E., Reuss, S., & Boehmer, G. (2004). Contribution of Ca2+-activated K+ channels to hyperpolarizing after-potentials and discharge pattern in rat supraoptic neurones. Journal of Neuroendocrinology, 16, 577–588.

    PubMed  CAS  Google Scholar 

  • Greffrath, W., Martin, E., Reuss, S., & Boehmer, G. (1998). Components of after-hyperpolarization in magnocellular neurones of the rat supraoptic nucleus in vitro. Journal of Physiology, 513, 493–506.

    PubMed  CAS  Google Scholar 

  • Guinamard, R., Chatelier, A., Demion, M., Potreau, D., Patri, S., Rahmati, M., et al. (2004). Functional characterization of a Ca2+-activated non-selective cation channel in human atrial cardiomyocytes. Journal of Physiology, 558, 75–83.

    PubMed  CAS  Google Scholar 

  • Guinamard, R., Rahmati, M., Lenfant, J., & Bois, P. (2002). Characterization of a Ca2+-activated nonselective cation channel during dedifferentiation of cultured rat ventricular cardiomyocytes. Journal of Membrane Biology, 188, 127–135.

    PubMed  CAS  Google Scholar 

  • Hairer, E., & Wanner, E. (1996). Solving ordinary differential equations. II. Stiff and differential-algebraic problems. Springer Series in Computational Mathematics, 14, 118–130, 565–576.

    Google Scholar 

  • Han, J., Gnatenco, C., Sladek, C. D., & Kim, D. (2003). Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal of Physiology, 546, 625–639.

    PubMed  CAS  Google Scholar 

  • Hatton, G. I., & Li, Z. (1998). Mechanisms of neuroendocrine cell excitability. Advances in Experimental Medicine and Biology, 449, 79–95.

    PubMed  CAS  Google Scholar 

  • Häusser, M., Spruston, N., & Stuart, G. J. (2000). Diversity and dynamics of dendritic signaling. Science, 290, 739–744.

    PubMed  Google Scholar 

  • Hille, B. (2001). Ionic channels of excitable membranes (3rd ed.). Sunderland, MA: Sinauer.

    Google Scholar 

  • Hirasawa, M., Mouginot, D., Kozoriz, M. G., Kombian, S. B., & Pittman, Q. J. (2003). Vasopressin differentially modulates non-NMDA receptors in vasopressin and oxytocin neurons in the supraoptic nucleus. Journal of Neuroscience, 23, 4270–4277.

    PubMed  CAS  Google Scholar 

  • Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. (1997). K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387, 869–875.

    PubMed  CAS  Google Scholar 

  • Hoffman, N. W., Tasker, J. G., & Dudek, F. E. (1991). Immunohistochemical differentiation of electrophysiologically defined neuronal populations in the region of the hypothalamic paraventricular nucleus of the rat. Journal of Comparative Neurology, 307, 405–416.

    PubMed  CAS  Google Scholar 

  • Johnston, D., Hoffman, D. A., Magee, J. C., Poolos, N. P., Watanabe, S., Colbert, C. M., et al. (2000). Dendritic potassium channels in hippocampal pyramidal neurons. Journal of Physiology, 525, 75–81.

    PubMed  CAS  Google Scholar 

  • Joux, N., Chevaleyre, V., Alonso, G., Boissin-Agasse, L., Moos, F. C., Desarmenien, M. G., et al. (2001). High voltage-activated Ca2+ currents in rat supraoptic neurones: Biophysical properties and expression of the various channel alpha1 subunits. Journal of Neuroendocrinology, 13, 638–649.

    PubMed  CAS  Google Scholar 

  • Kang, Y., Okada, T., & Ohmori, H. (1998). A phenytoin-sensitive cationic current participates in generating the afterdepolarization and burst afterdischarge in rat neocortical pyramidal cells. European Journal of Neuroscience, 10, 1363–1375.

    PubMed  CAS  Google Scholar 

  • Kirkpatrick, K., & Bourque, C. W. (1996). Activity dependence and functional role of the apamin-sensitive K+ current in rat supraoptic neurones in vitro. Journal of Physiology, 494, 389–398.

    PubMed  CAS  Google Scholar 

  • Komendantov, A. O., & Canavier, C. C. (2002). Electrical coupling between model midbrain dopamine neurons: Effect on firing pattern and synchrony. Journal of Neurophysiology, 87, 1526–1541.

    PubMed  CAS  Google Scholar 

  • Komendantov, A. O., Komendantova, O. G., Johnson, S. W., & Canavier, C. C. (2004). A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. Journal of Neurophysiology, 91, 346–357.

    PubMed  CAS  Google Scholar 

  • Komendantov, A. O., Trayanova, N. A., & Tasker, J. G. (2002). Roles of intrinsic ionic currents and excitatory synaptic inputs in burst generation in oxytocin-secreting neurons: A computational study (Abstract). In Soc. Neurosci. 32nd Annual Meeting, Nov. 2–7, 2002, Orlando, FL, Program No. 273.4. (Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2002. CD-ROM).

  • Komendantov, A. O., Trayanova, N. A., & Tasker, J. G. (2003). Roles of synaptic inputs and retrograde signalling in burst firing in a model of hypothalamic vasopressin neurons (Abstract). In Soc. Neurosci. 33rd Annual Meeting, Nov. 8–12, 2003, New Orleans, LA, Program No. 612.17. (Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2003. CD-ROM).

  • Lancaster, B., & Adams, P. R. (1986). Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. Journal of Neurophysiology, 55, 1268–1282.

    PubMed  CAS  Google Scholar 

  • Lancaster, B., & Nicoll, R. A. (1987). Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. Journal of Physiology, 389, 187–203.

    PubMed  CAS  Google Scholar 

  • Larkum, M. E., Rioult, M. G., & Luscher, H. R. (1996). Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. Journal of Neurophysiology, 75, 154–170.

    PubMed  CAS  Google Scholar 

  • Leonoudakis, D., Gray, A. T., Winegar, B. D., Kindler, C. H., Harada, M., Taylor, D. M. C.-R., et al.(1998). An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. Journal of Neuroscience, 18, 868–877.

    PubMed  CAS  Google Scholar 

  • Lesage, F., & Lazdunski, M. (2000). Molecular and functional properties of two-pore-domain potassium channels. American Journal of Physiology. Renal Physiology, 279, F793–F801.

    PubMed  CAS  Google Scholar 

  • Li, Z., Decavel, C., & Hatton, G. I. (1995). Calbindin-D28k: Role in determining intrinsically generated firing patterns in rat supraoptic neurones. Journal of Physiology, 488, 601–608.

    PubMed  CAS  Google Scholar 

  • Li, Z., & Hatton, G. I. (1997a). Ca2+ release from internal stores: Role in generating depolarizing after-potentials in rat supraoptic neurones. Journal of Physiology, 498, 339–350.

    PubMed  CAS  Google Scholar 

  • Li, Z., & Hatton, G. I. (1997b). Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones. Journal of Physiology, 505, 95–106.

    PubMed  CAS  Google Scholar 

  • Liman, E. R. (2003). Regulation by voltage and adenine nucleotides of a Ca2+-activated cation channel from hamster vomeronasal sensory neurons. Journal of Physiology, 548, 777–787.

    PubMed  CAS  Google Scholar 

  • Luther, J. A., Halmos, K. C., & Tasker, J. G. (2000). A slow transient potassium current expressed in a subset of neurosecretory neurons of the hypothalamic paraventricular nucleus. Journal of Neurophysiology, 84, 1814–1825.

    PubMed  CAS  Google Scholar 

  • Luther, J. A., & Tasker, J. G. (2000). Voltage-gated currents distinguish parvocellular from magnocellular neurones in the rat hypothalamic paraventricular nucleus. Journal of Physiology, 523, 193–209.

    PubMed  CAS  Google Scholar 

  • MacDermott, A. B., & Weight, F. F. (1982). Action potential repolarization may involve a transient, Ca2+-sensitive outward current in a vertebrate neurone. Nature, 300, 185–188.

    PubMed  CAS  Google Scholar 

  • Magee, J. C., & Johnston, D. (1995). Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. Journal of Physiology, 487, 67–90.

    PubMed  CAS  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1999). Modeling active dendritic processes in pyramidal neurons. In Methods in neuronal modeling. From ions to networks (2nd ed., pp. 171–209). Cambridge, MA: MIT Press.

    Google Scholar 

  • Marion, N. V., & Tavalin, S. J. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature, 395, 900–905.

    Google Scholar 

  • Marty, A. (1981). Ca2+-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature, 291, 497–499.

    PubMed  CAS  Google Scholar 

  • Marty, A., & Neher, E. (1985). Potassium channels in cultured bovine adrenal chromaffin cells. Journal of Physiology, 367, 117–141.

    PubMed  CAS  Google Scholar 

  • Mason, W. T., & Leng, G. (1984). Complex action potential waveform recorded from supraoptic and paraventicular neurons in the rat: Evidence for sodium and calcium spike components at different membrane sites. Experimental Brain Research, 56, 135–143.

    CAS  Google Scholar 

  • Migliore, M., & Shepherd, G. M. (2002). Emerging rules for the distributions of active dendritic conductances. Nature Reviews. Neuroscience, 3, 362–370.

    PubMed  CAS  Google Scholar 

  • Millhouse, O. E. (1979). A Golgi anatomy of the rodent hypothalamus. In Anatomy of the hypothalamus (Handbook of the hypothalamus; v.1) (pp. 221–265). New York: Marcell Dekker.

    Google Scholar 

  • Oliet, S. H., & Bourque, C. W. (1992). Properties of supraoptic magnocellular neurones isolated from the adult rat. Journal of Physiology, 455, 291–306.

    PubMed  CAS  Google Scholar 

  • Partridge, L. D., Muller, T. H., & Swandulla, D. (1994). Calcium-activated non-selective channels in the nervous system. Brain Research Brain Res Reviews, 19, 319–325.

    CAS  Google Scholar 

  • Poulain, D. A., & Wakerley, J. B. (1982). Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience, 7, 773–808.

    PubMed  CAS  Google Scholar 

  • Poulain, D. A., Wakerley, J. B., & Dyball, R. E. (1977). Electrophysiological differentiation of oxytocin- and vasopressin-secreting neurones. Proceedings of the Royal Society of London. Series B, Biological Sciences, 196, 367–384.

    Article  PubMed  CAS  Google Scholar 

  • Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: Construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015.

    PubMed  Google Scholar 

  • Randle, J. C., Bourque, C. W., & Renaud, L. P. (1986). Serial reconstruction of Lucifer yellow-labeled supraoptic nucleus neurons in perfused rat hypothalamic explants. Neuroscience, 17, 453–467.

    PubMed  CAS  Google Scholar 

  • Roper, P., Callaway, J., & Armstrong, W. (2004). Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: A combined mathematical, electrical, and calcium fluorescence study. Journal of Neuroscience, 24, 4818–4831.

    PubMed  CAS  Google Scholar 

  • Roper, P., Callaway, J., Shevchenko, T., Teruyama, R., & Armstrong, W. (2003). AHP’s, HAP’s and DAP’s: How potassium currents regulate the excitability of rat supraoptic neurones. Journal of Computational Neuroscience, 15, 367–389.

    PubMed  Google Scholar 

  • Sah, P., & Bekkers, J. M. (1996). Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: Implications for the integration of long-term potentiation. Journal of Neuroscience, 16, 4537–4542.

    PubMed  CAS  Google Scholar 

  • Sah, P., & Davies, P. (2000). Calcium-activated potassium currents in mammalian neurons. Clinical and Experimental Pharmacology and Physiology, 27, 657–663.

    PubMed  CAS  Google Scholar 

  • Siemen, D. (1993). Nonselective cation channels. EXS, 66, 3–25.

    PubMed  CAS  Google Scholar 

  • Stern, J. E., & Armstrong, W. E. (1995). Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro. Journal of Physiology, 488, 701–708.

    PubMed  CAS  Google Scholar 

  • Stern, J. E., & Armstrong, W. E. (1996). Changes in the electrical properties of supraoptic nucleus oxytocin and vasopressin neurons during lactation. Journal of Neuroscience, 16, 4861–4871.

    PubMed  CAS  Google Scholar 

  • Stern, J. E., & Armstrong, W. E. (1997). Sustained outward rectification of oxytocinergic neurones in the rat supraoptic nucleus: Ionic dependence and pharmacology. Journal of Physiology, 500, 497–508.

    PubMed  CAS  Google Scholar 

  • Stern, J. E., & Armstrong, W. E. (1998). Reorganization of the dendritic trees of oxytocin and vasopressin neurons of the rat supraoptic nucleus during lactation. Journal of Neuroscience, 18, 841–853.

    PubMed  CAS  Google Scholar 

  • Stuart, G. J., & Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature, 367, 69–72.

    PubMed  CAS  Google Scholar 

  • Sun, X., Gu, X. Q., & Haddad, G. G. (2003). Calcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+-activated K+ current in mouse neocortical pyramidal neurons. Journal of Neuroscience, 23, 3639–3648.

    PubMed  CAS  Google Scholar 

  • Tanaka, M., Cummins, T. R., Ishikawa, K., Black, J. A., Ibata, Y., & Waxman, S. G. (1999). Molecular and functional remodeling of electrogenic membrane of hypothalamic neurons in response to changes in their input. Proceedings of the National Academy of Sciences of the United States of America, 96, 1088–1093.

    PubMed  CAS  Google Scholar 

  • Tasker, J. G., & Dudek, F. E. (1991). Electrophysiological properties of neurones in the region of the paraventricular nucleus in slices of rat hypothalamus. Journal of Physiology, 434, 271–293.

    PubMed  CAS  Google Scholar 

  • Teruyama, R., & Armstrong, W. E. (2002). Changes in the active membrane properties of rat supraoptic neurones during pregnancy and lactation. Journal of Neuroendocrinology, 14, 933–944.

    PubMed  CAS  Google Scholar 

  • Teruyama, R., & Armstrong, W. E. (2006). Characterization of the fast depolarizing after-potential in vasopressin neurons in the supraoptic nucleus (Abstract). In Soc. Neurosci. 36th Annual Meeting, Oct. 14–18, 2006, Atlanta, GA, Program No. 153.8. (Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2006. CD-ROM).

  • Teulon, J. (2000). Ca2+-activated non-selective cation channels. In M. Endo, Y. Kurachi & M. Mishina (Eds.), Pharmacology of ionic channel function: Activators and inhibitors (pp. 625–649). Berlin: Springer.

    Google Scholar 

  • Thorn, P., & Petersen, O. H. (1993). Nonselective cation channels in exocrine gland cells. EXS, 66, 185–200.

    PubMed  CAS  Google Scholar 

  • Vergara, C., Latorre, R., Marrion, N. V., & Adelman, J. P. (1998). Calcium-activated potassium channels. Current Opinion in Neurobiology, 8, 321–329.

    PubMed  CAS  Google Scholar 

  • Vogalis, F., Harvey, J. R., Lohman, R. J., & Furness, J. B. (2002). Action potential afterdepolarization mediated by a Ca2+-activated cation conductance in myenteric AH neurons. Neuroscience, 115, 375–393.

    PubMed  CAS  Google Scholar 

  • Wakerley, J. B., & Lincoln, D. W. (1973). The milk-ejection reflex of the rat: A 20- to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release. Journal of Endocrinology, 57, 477–493.

    Article  PubMed  CAS  Google Scholar 

  • Widmer, H., Boissin-Agasse, L., Richard, P., & Desarmenien, M. G. (1997). Differential distribution of a potassium current in immunocytochemically identified supraoptic magnocellular neurones of the rat. Neuroendocrinology, 65, 229–237.

    PubMed  CAS  Google Scholar 

  • Wilson, C. J., & Callaway, J. C. (2000). Coupled oscillator model of the dopaminergic neuron of the substantia nigra. Journal of Neurophysiology, 83, 3084–3100.

    PubMed  CAS  Google Scholar 

  • Womack, M. D., & Khodakhah, K. (2002). Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons. European Journal of Neuroscience, 16, 1214–1222.

    PubMed  Google Scholar 

  • Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J. E., et al. (1998). Mechanisms of calcium gating in small-conductance calcium-activated potassium channels. Nature, 395, 503–507.

    PubMed  CAS  Google Scholar 

  • Zhu, Z. T., Munhall, A., Shen, K. Z., & Johnson, S. W. (2004). Calcium-dependent subthreshold oscillations determine bursting activity induced by N-methyl-D-aspartate in rat subthalamic neurons in vitro. European Journal of Neuroscience, 19, 1296–1304.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Cherif Boudaba for providing recordings of MNC spiking activity. This work was supported by U.S. Department of Energy Grant DE-FG02-01ER63119 (to the Tulane University Center for Computational Science), and National Institutes of Health grants NS039099 (to J. G. Tasker) and HL063195 (to N.A. Trayanova).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander O. Komendantov.

Additional information

Action Editor: Eric De Schutter

Appendices

Appendix

The membrane potential of each compartment of the magnocellular neuron is described by the current balance equation:

$$ \begin{array}{*{20}c} {C_{m} {\left( {{{\text{d}}V_{{{\text{sd}}}} } \mathord{\left/ {\vphantom {{{\text{d}}V_{{{\text{sd}}}} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t}} \right)} = I_{{{\text{Na,sd}}}} + I_{{A,{\text{sd}}}} + I_{{K{\left( {DR} \right)},{\text{sd}}}} + I_{{{\text{Ca}},L,{\text{sd}}}} + I_{{{\text{CAN,sd}}}} + I_{{{\text{SK,sd}}}} + I_{{L,{\text{sd}}}} + I_{{{\text{sd}} - pd}} } \\ {C_{m} {\left( {{{\text{d}}V_{{{\text{pd}}}} } \mathord{\left/ {\vphantom {{{\text{d}}V_{{{\text{pd}}}} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t}} \right)} = I_{{{\text{Na}},{\text{pd}}}} + I_{{A,{\text{pd}}}} + I_{{K{\left( {DR} \right)},{\text{pd}}}} + I_{{{\text{Ca}},L,{\text{pd}}}} + I_{{{\text{Ca}},N,{\text{pd}}}} + I_{{{\text{SK}},{\text{pd}}}} + I_{{{\text{BK}},{\text{pd}}}} + I_{{{\text{CAN}},{\text{pd}}}} + I_{{L,{\text{pd}}}} + I_{{{\text{pd - s}}}} + I_{{{\text{pd - sd}}}} } \\ {C_{m} {\left( {{{\text{d}}V_{{\text{s}}} } \mathord{\left/ {\vphantom {{{\text{d}}V_{{\text{s}}} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t}} \right)} = I_{{{\text{Na}},{\text{s}}}} + I_{{A,{\text{s}}}} + I_{{K{\left( {DR} \right)},{\text{s}}}} + I_{{{\text{Ca}},L,{\text{s}}}} + I_{{{\text{Ca}},N,{\text{s}}}} + I_{{{\text{SK}},{\text{s}}}} + I_{{{\text{BK}},{\text{s}}}} + I_{{{\text{CAN}},{\text{s}}}} + I_{{L,{\text{s}}}} + I_{{{\text{s - pd}}}} + I_{{{\text{stim}}}} ,} \\ \end{array} $$

where C m is the specific neuronal membrane capacitance; I sd-pd, I pd-s , I pd-sd, and I s-pd are the intercompartmental coupling currents; and I stim is the applied microelectrode current. The subscripts “sd,” “pd,” and “s” indicate secondary (distal) dendritic compartment, primary (proximal) dendritic compartment, and somatic compartment, respectively. Each compartment has its own set of conductances for the ion currents.

Membrane ion currents

The membrane ion currents in the model were described using the Hodgkin-Huxley formalism. The subscript “i” indicates a compartment (s, pd or sd).

2.1 Transient sodium current (based on Tanaka et al. 1999)

$$ \begin{array}{*{20}l} {{I_{{{\text{Na}},i}} = g_{{{\text{Na}},i}} m^{3}_{\infty } ih_{i} {\left( {V_{i} - E_{{{\text{Na}}}} } \right)};} \hfill} \\ {{m_{{\infty ,i}} = 1 \mathord{\left/ {\vphantom {1 {{\left( {1 + \exp {\left( { - {{\left( {V_{i} + 34.6} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 34.6} \right)}} {6.2}}} \right. \kern-\nulldelimiterspace} {6.2}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( { - {{\left( {V_{i} + 34.6} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 34.6} \right)}} {6.2}}} \right. \kern-\nulldelimiterspace} {6.2}} \right)}} \right)}};} \hfill} \\ {{{{\text{d}}h_{i} } \mathord{\left/ {\vphantom {{{\text{d}}h_{i} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t} = {{\left( {h_{{\infty ,i}} - h_{i} } \right)}} \mathord{\left/ {\vphantom {{{\left( {h_{{\infty ,i}} - h_{i} } \right)}} {\tau _{{h,i}} }}} \right. \kern-\nulldelimiterspace} {\tau _{{h,i}} };} \hfill} \\ {{h_{{\infty ,i}} = 1 \mathord{\left/ {\vphantom {1 {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 61.6} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 61.6} \right)}} {6.8}}} \right. \kern-\nulldelimiterspace} {6.8}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 61.6} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 61.6} \right)}} {6.8}}} \right. \kern-\nulldelimiterspace} {6.8}} \right)}} \right)}};} \hfill} \\ {{\tau _{{h,i}} = {26.0} \mathord{\left/ {\vphantom {{26.0} {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 46.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 46.0} \right)}} {7.0}}} \right. \kern-\nulldelimiterspace} {7.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 46.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 46.0} \right)}} {7.0}}} \right. \kern-\nulldelimiterspace} {7.0}} \right)}} \right)}} + {3.0} \mathord{\left/ {\vphantom {{3.0} {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 49.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 49.0} \right)}} {20.0}}} \right. \kern-\nulldelimiterspace} {20.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 49.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 49.0} \right)}} {20.0}}} \right. \kern-\nulldelimiterspace} {20.0}} \right)}} \right)}} + 0.1.} \hfill} \\ \end{array} $$

2.2 Calcium currents (based on Joux et al. 2001)

2.2.1 High threshold current with no or very slow inactivation (N-type)

$$ \begin{array}{*{20}l} {{I_{{{\text{Ca}},N,i}} = g_{{{\text{Ca}},N,i}} m_{{N,i}} {\left( {V_{i} - E_{{{\text{Ca}},i}} } \right)};} \hfill} \\ {{{{\text{d}}m_{{N,i}} } \mathord{\left/ {\vphantom {{{\text{d}}m_{{N,i}} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t} = {{\left( {m_{{N\infty ,i}} - m_{{N,i}} } \right)}} \mathord{\left/ {\vphantom {{{\left( {m_{{N\infty ,i}} - m_{{N,i}} } \right)}} {t_{{{\text{mN}}}} }}} \right. \kern-\nulldelimiterspace} {t_{{{\text{mN}}}} };} \hfill} \\ {{m_{{N\infty ,i}} = {1.0} \mathord{\left/ {\vphantom {{1.0} {{\left( {1.0 + \exp {\left( { - {{\left( {V_{i} + 11.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 11.0} \right)}} {4.2}}} \right. \kern-\nulldelimiterspace} {4.2}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1.0 + \exp {\left( { - {{\left( {V_{i} + 11.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 11.0} \right)}} {4.2}}} \right. \kern-\nulldelimiterspace} {4.2}} \right)}} \right)}}.} \hfill} \\ \end{array} $$

2.2.2 Lower threshold (L-type) current

$$ \begin{array}{*{20}l} {{I_{{{\text{Ca}},L,i}} = g_{{{\text{Ca}},L,i}} m_{{L,ih}} L_{{\infty ,i}} {\left( {V_{i} - E_{{{\text{Ca}},i}} } \right)};} \hfill} \\ {{{{\text{d}}m_{{L,i}} } \mathord{\left/ {\vphantom {{{\text{d}}m_{{L,i}} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t} = {{\left( {m_{{L\infty ,i}} - m_{{L,i}} } \right)}} \mathord{\left/ {\vphantom {{{\left( {m_{{L\infty ,i}} - m_{{L,i}} } \right)}} {\tau _{{mL}} }}} \right. \kern-\nulldelimiterspace} {\tau _{{mL}} };} \hfill} \\ {{m_{{L\infty ,{\text{s}}}} = {0.5} \mathord{\left/ {\vphantom {{0.5} {{\left( {1.0 + \exp {\left( {{ - {\left( {V_{{\text{s}}} + 27.0} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{{\text{s}}} + 27.0} \right)}} {4.5}}} \right. \kern-\nulldelimiterspace} {4.5}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1.0 + \exp {\left( {{ - {\left( {V_{{\text{s}}} + 27.0} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{{\text{s}}} + 27.0} \right)}} {4.5}}} \right. \kern-\nulldelimiterspace} {4.5}} \right)}} \right)}} + {0.5} \mathord{\left/ {\vphantom {{0.5} {{\left( {1.0 + \exp {\left( {{ - {\left( {V_{{\text{s}}} + 11.4} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{{\text{s}}} + 11.4} \right)}} {2.0}}} \right. \kern-\nulldelimiterspace} {2.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1.0 + \exp {\left( {{ - {\left( {V_{{\text{s}}} + 11.4} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{{\text{s}}} + 11.4} \right)}} {2.0}}} \right. \kern-\nulldelimiterspace} {2.0}} \right)}} \right)}};} \hfill} \\ {{m_{{L\infty ,{\text{pd}}}} = {0.4} \mathord{\left/ {\vphantom {{0.4} {{\left( {1.0 + \exp {\left( {{ - {\left( {V_{{{\text{pd}}}} + 27.0} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{{{\text{pd}}}} + 27.0} \right)}} {4.5}}} \right. \kern-\nulldelimiterspace} {4.5}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1.0 + \exp {\left( {{ - {\left( {V_{{{\text{pd}}}} + 27.0} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{{{\text{pd}}}} + 27.0} \right)}} {4.5}}} \right. \kern-\nulldelimiterspace} {4.5}} \right)}} \right)}} + {0.6} \mathord{\left/ {\vphantom {{0.6} {{\left( {1.0 + \exp {\left( { - {{\left( {V_{{{\text{pd}}}} {\text{ + }}11.4} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{{{\text{pd}}}} {\text{ + }}11.4} \right)}} {2.0}}} \right. \kern-\nulldelimiterspace} {2.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1.0 + \exp {\left( { - {{\left( {V_{{{\text{pd}}}} {\text{ + }}11.4} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{{{\text{pd}}}} {\text{ + }}11.4} \right)}} {2.0}}} \right. \kern-\nulldelimiterspace} {2.0}} \right)}} \right)}};} \hfill} \\ {{m_{{L\infty ,{\text{sd}}}} = {0.3} \mathord{\left/ {\vphantom {{0.3} {}}} \right. \kern-\nulldelimiterspace} {}{\left( {1.0 + \exp {\left( {{ - {\left( {V_{{{\text{sd}}}} + 27.0} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{{{\text{sd}}}} + 27.0} \right)}} {4.5}}} \right. \kern-\nulldelimiterspace} {4.5}} \right)}} \right)} + {0.7} \mathord{\left/ {\vphantom {{0.7} {{\left( {1.0 + \exp {\left( {{ - {\left( {V_{{{\text{sd}}}} + 11.4} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{{{\text{sd}}}} + 11.4} \right)}} {2.0}}} \right. \kern-\nulldelimiterspace} {2.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1.0 + \exp {\left( {{ - {\left( {V_{{{\text{sd}}}} + 11.4} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{{{\text{sd}}}} + 11.4} \right)}} {2.0}}} \right. \kern-\nulldelimiterspace} {2.0}} \right)}} \right)}};} \hfill} \\ {{h_{{L\infty ,i}} = {0.2\;K^{4}_{{M,L1}} } \mathord{\left/ {\vphantom {{0.2\;K^{4}_{{M,L1}} } {{\left( {K^{4}_{{M,L1}} + {\left[ {{\text{Ca}}^{{2 + }} } \right]}^{4}_{{{\text{in}},i}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {K^{4}_{{M,L1}} + {\left[ {{\text{Ca}}^{{2 + }} } \right]}^{4}_{{{\text{in}},i}} } \right)}} + {0.8\;K_{{M,L2}} } \mathord{\left/ {\vphantom {{0.8\;K_{{M,L2}} } {{\left( {K_{{M,L2}} + {\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {K_{{M,L2}} + {\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)}}.} \hfill} \\ \end{array} $$

2.3 Potassium currents

2.3.1 Delayed rectifier current (based on Luther and Tasker 2000)

$$ \begin{array}{*{20}l} {{I_{{KDR,i}} = g_{{KDR,i}} n^{3} i{\left( {V_{i} - E_{K} } \right)};} \hfill} \\ {{{{\text{d}}n_{i} } \mathord{\left/ {\vphantom {{{\text{d}}n_{i} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t} = {{\left( {n_{{\infty ,i}} - n_{i} } \right)}} \mathord{\left/ {\vphantom {{{\left( {n_{{\infty ,i}} - n_{i} } \right)}} {\tau _{n} }}} \right. \kern-\nulldelimiterspace} {\tau _{n} };} \hfill} \\ {{n_{{\infty ,i}} = 1 \mathord{\left/ {\vphantom {1 {{\left( {1 + \exp {\left( {{ - {\left( {V_{i} + 18.3} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} + 18.3} \right)}} 9}} \right. \kern-\nulldelimiterspace} 9} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{ - {\left( {V_{i} + 18.3} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} + 18.3} \right)}} 9}} \right. \kern-\nulldelimiterspace} 9} \right)}} \right)}};} \hfill} \\ {{\tau _{{n,i}} = {3.6} \mathord{\left/ {\vphantom {{3.6} {{\left( {1 + \exp {\left( {{{\left( {V_{i} - 3.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} - 3.0} \right)}} {5.0}}} \right. \kern-\nulldelimiterspace} {5.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {V_{i} - 3.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} - 3.0} \right)}} {5.0}}} \right. \kern-\nulldelimiterspace} {5.0}} \right)}} \right)}} + {1.6} \mathord{\left/ {\vphantom {{1.6} {{\left( {1 + \exp {\left( {{V_{i} } \mathord{\left/ {\vphantom {{V_{i} } {10.0}}} \right. \kern-\nulldelimiterspace} {10.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{V_{i} } \mathord{\left/ {\vphantom {{V_{i} } {10.0}}} \right. \kern-\nulldelimiterspace} {10.0}} \right)}} \right)}} + {5.2} \mathord{\left/ {\vphantom {{5.2} {{\left( {1 + \exp {\left( {{ - {\left( {V_{i} + 65.0} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} + 65.0} \right)}} {6.0}}} \right. \kern-\nulldelimiterspace} {6.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{ - {\left( {V_{i} + 65.0} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} + 65.0} \right)}} {6.0}}} \right. \kern-\nulldelimiterspace} {6.0}} \right)}} \right)}} - 4.0.} \hfill} \\ \end{array} $$

2.3.2 A-current (based on Luther and Tasker 2000)

$$ \begin{array}{*{20}l} {{I_{{A,i}} = g_{{A,i}} p^{4} _{i} q_{i} {\left( {V_{i} - E_{K} } \right)};} \hfill} \\ {{{{\text{d}}p_{i} } \mathord{\left/ {\vphantom {{{\text{d}}p_{i} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t} = {{\left( {p_{{\infty ,i}} - p_{i} } \right)}} \mathord{\left/ {\vphantom {{{\left( {p_{{\infty ,i}} - p_{i} } \right)}} {\tau _{{p,i}} }}} \right. \kern-\nulldelimiterspace} {\tau _{{p,i}} };} \hfill} \\ {{p_{{\infty ,i}} = 1 \mathord{\left/ {\vphantom {1 {{\left( {1 + \exp {\left( {{ - {\left( {V_{i} + 46.8} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} + 46.8} \right)}} {9.3}}} \right. \kern-\nulldelimiterspace} {9.3}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{ - {\left( {V_{i} + 46.8} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} + 46.8} \right)}} {9.3}}} \right. \kern-\nulldelimiterspace} {9.3}} \right)}} \right)}};} \hfill} \\ {{{{\text{d}}q_{i} } \mathord{\left/ {\vphantom {{{\text{d}}q_{i} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t} = {{\left( {q_{{\infty ,i}} - q_{i} } \right)}} \mathord{\left/ {\vphantom {{{\left( {q_{{\infty ,i}} - q_{i} } \right)}} {\tau _{{q,i}} }}} \right. \kern-\nulldelimiterspace} {\tau _{{q,i}} };} \hfill} \\ {{q_{{\infty ,i}} = 1 \mathord{\left/ {\vphantom {1 {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 80.1} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 80.1} \right)}} {8.8}}} \right. \kern-\nulldelimiterspace} {8.8}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 80.1} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 80.1} \right)}} {8.8}}} \right. \kern-\nulldelimiterspace} {8.8}} \right)}} \right)}};} \hfill} \\ {{\tau _{{p,i}} = 0.2 + {6.4} \mathord{\left/ {\vphantom {{6.4} {{\left( {\exp {\left( {{{\left( {V_{i} + 68.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 68.0} \right)}} {27.0}}} \right. \kern-\nulldelimiterspace} {27.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {\exp {\left( {{{\left( {V_{i} + 68.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 68.0} \right)}} {27.0}}} \right. \kern-\nulldelimiterspace} {27.0}} \right)}} \right)}} + 4.0\exp {\left( {{ - {\left( {V_{i} + 130.0} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} + 130.0} \right)}} {35.0}}} \right. \kern-\nulldelimiterspace} {35.0}} \right)} + {0.4} \mathord{\left/ {\vphantom {{0.4} {{\left( {1 + \exp {\left( {{{\left( {V_{i} - 25.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} - 25.0} \right)}} {4.0}}} \right. \kern-\nulldelimiterspace} {4.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {V_{i} - 25.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} - 25.0} \right)}} {4.0}}} \right. \kern-\nulldelimiterspace} {4.0}} \right)}} \right)}};} \hfill} \\ {{\tau _{{q,i}} = {350} \mathord{\left/ {\vphantom {{350} {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 120} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 120} \right)}} {10.0}}} \right. \kern-\nulldelimiterspace} {10.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 120} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 120} \right)}} {10.0}}} \right. \kern-\nulldelimiterspace} {10.0}} \right)}} \right)}} + {7.5} \mathord{\left/ {\vphantom {{7.5} {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 8.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 8.0} \right)}} {5.0}}} \right. \kern-\nulldelimiterspace} {5.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {V_{i} + 8.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} + 8.0} \right)}} {5.0}}} \right. \kern-\nulldelimiterspace} {5.0}} \right)}} \right)}} + {12.5} \mathord{\left/ {\vphantom {{12.5} {{\left( {1 + \exp {\left( {{{\left( {V_{i} - 2.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} - 2.0} \right)}} {5.0}}} \right. \kern-\nulldelimiterspace} {5.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {V_{i} - 2.0} \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{i} - 2.0} \right)}} {5.0}}} \right. \kern-\nulldelimiterspace} {5.0}} \right)}} \right)}} + 1.0.} \hfill} \\ \end{array} $$

2.3.3 SOR current (for the model OT neuron only; based on Stern and Armstrong 1995)

$$ \begin{array}{*{20}l} {{I_{{{\text{SOR}},i}} = g_{{{\text{SOR}},i}} m_{{{\text{SOR}},i}} {\left( {V_{i} - E_{K} } \right)};} \hfill} \\ {{{{\text{d}}m_{{{\text{SOR}},i}} } \mathord{\left/ {\vphantom {{{\text{d}}m_{{{\text{SOR}},i}} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t} = {{\left( {m_{{{\text{SOR}}\infty ,i}} - m_{{{\text{SOR}},i}} } \right)}} \mathord{\left/ {\vphantom {{{\left( {m_{{{\text{SOR}}\infty ,i}} - m_{{{\text{SOR}},i}} } \right)}} {\tau _{{m,{\text{SOR}}}} }}} \right. \kern-\nulldelimiterspace} {\tau _{{m,{\text{SOR}}}} };} \hfill} \\ {{m_{{{\text{SOR}}\infty ,i}} = {1.0} \mathord{\left/ {\vphantom {{1.0} {{\left( {1.0 + \exp {\left( {{ - {\left( {V_{i} + 60.0} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} + 60.0} \right)}} {4.0}}} \right. \kern-\nulldelimiterspace} {4.0}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1.0 + \exp {\left( {{ - {\left( {V_{i} + 60.0} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} + 60.0} \right)}} {4.0}}} \right. \kern-\nulldelimiterspace} {4.0}} \right)}} \right)}}.} \hfill} \\ \end{array} $$

2.3.4 Ca2+-sensitive K+ currents (In the equations, [Ca2+] is in mM)

2.3.4.1 SK current (based on Vergara et al. 1998; Xia et al. 1998)
$$ \begin{array}{*{20}l} {{I_{{{\text{SK}},i}} = g_{{,{\text{SK}},i}} m_{{{\text{SK}}\infty ,i}} {\left( {V_{i} - E_{K} } \right)};} \hfill} \\ {{m_{{{\text{SK}}\infty ,i}} = 1 \mathord{\left/ {\vphantom {1 {{\left( {1 + {\left( {{K_{{m,{\text{SK}}}} } \mathord{\left/ {\vphantom {{K_{{m,{\text{SK}}}} } {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} }}} \right. \kern-\nulldelimiterspace} {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} }} \right)}^{{4.5}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + {\left( {{K_{{m,{\text{SK}}}} } \mathord{\left/ {\vphantom {{K_{{m,{\text{SK}}}} } {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} }}} \right. \kern-\nulldelimiterspace} {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} }} \right)}^{{4.5}} } \right)}}.} \hfill} \\ \end{array} $$
2.3.4.2 BK current (based on Dopico et al. 1999)
$$ \begin{array}{*{20}l} {{I_{{BK,i}} = g_{{{\text{BK}},i}} m_{{{\text{BK}}\infty ,i}} {\left( {V_{i} - E_{K} } \right)};} \hfill} \\ {{m_{{{\text{BK}}\infty ,i}} = 1 \mathord{\left/ {\vphantom {1 {{\left( {1 + \exp {\left( {{ - {\left( {V_{i} - {\left( { - 138.37\;\log _{{10}} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{BK}},i}} } \right)} - 463} \right)}} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} - {\left( { - 138.37\;\log _{{10}} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{BK}},i}} } \right)} - 463} \right)}} \right)}} {11}}} \right. \kern-\nulldelimiterspace} {11}} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{ - {\left( {V_{i} - {\left( { - 138.37\;\log _{{10}} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{BK}},i}} } \right)} - 463} \right)}} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} - {\left( { - 138.37\;\log _{{10}} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{BK}},i}} } \right)} - 463} \right)}} \right)}} {11}}} \right. \kern-\nulldelimiterspace} {11}} \right)}} \right)}}.} \hfill} \\ \end{array} $$

2.4 CAN current

$$ \begin{array}{*{20}l} {{I_{{{\text{CAN}},i}} = g_{{{\text{CAN}},i}} m_{{{\text{CAN}},i}} {\left( {2V_{i} - E_{{{\text{Na}}}} - E_{K} } \right)};} \hfill} \\ {{m_{{{\text{CAN}},i}} = A_{i} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)} \cdot B_{i} {\left( {V_{i} ,{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)};} \hfill} \\ {{A_{i} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)} = {{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)}^{2} } \mathord{\left/ {\vphantom {{{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)}^{2} } {{\left( {{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)}^{2} + K^{2}_{{d,{\text{CAN}}}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)}^{2} + K^{2}_{{d,{\text{CAN}}}} } \right)}};} \hfill} \\ {{B_{i} {\left( {V_{i} ,{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)} = 1 \mathord{\left/ {\vphantom {1 {{\left( {1 + \exp {\left( {{ - {\left( {V_{i} - V_{{{\text{CAN}},h}} \cdot S_{i} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)}} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} - V_{{{\text{CAN}},h}} \cdot S_{i} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)}} \right)}} 3}} \right. \kern-\nulldelimiterspace} 3} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{ - {\left( {V_{i} - V_{{{\text{CAN}},h}} \cdot S_{i} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)}} \right)}} \mathord{\left/ {\vphantom {{ - {\left( {V_{i} - V_{{{\text{CAN}},h}} \cdot S_{i} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} } \right)}} \right)}} 3}} \right. \kern-\nulldelimiterspace} 3} \right)}} \right)}};} \hfill} \\ {{S_{i} = {1.0} \mathord{\left/ {\vphantom {{1.0} {{\left( {1 + \exp {\left( {{{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} - a_{1} } \right)}} \mathord{\left/ {\vphantom {{{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} - a_{1} } \right)}} {b_{1} }}} \right. \kern-\nulldelimiterspace} {b_{1} }} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} - a_{1} } \right)}} \mathord{\left/ {\vphantom {{{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} - a_{1} } \right)}} {b_{1} }}} \right. \kern-\nulldelimiterspace} {b_{1} }} \right)}} \right)}} + {1.2} \mathord{\left/ {\vphantom {{1.2} {{\left( {1 + \exp {\left( {{{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} - a_{2} } \right)}} \mathord{\left/ {\vphantom {{{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} - a_{2} } \right)}} {b_{2} }}} \right. \kern-\nulldelimiterspace} {b_{2} }} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + \exp {\left( {{{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} - a_{2} } \right)}} \mathord{\left/ {\vphantom {{{\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{in}},i}} - a_{2} } \right)}} {b_{2} }}} \right. \kern-\nulldelimiterspace} {b_{2} }} \right)}} \right)}} - 5.9.} \hfill} \\ \end{array} $$

2.5 Linear leakage current

$$ \begin{array}{*{20}l} {{I_{{L,i}} = I_{{L,{\text{Na}},i}} + I_{{L,K,i}} ;} \hfill} & {{I_{{L,K,i}} = g_{{L,K,i}} {\left( {V_{i} - E_{K} } \right)};} \hfill} & {{I_{{L,{\text{Na}},i}} = g_{{L,{\text{Na}},i}} {\left( {V_{i} - E_{{{\text{Na}}}} } \right)}} \hfill} \\ \end{array} $$

Calcium dynamics

3.1 Calcium dynamics in the cytoplasm

$$ {{\text{d}}{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{i} } \mathord{\left/ {\vphantom {{{\text{d}}{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{i} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t} = 2f_{{{\text{Ca}}}} {\left( {{ - {\left( {\Sigma I_{{{\text{Ca}},j,i}} } \right)}} \mathord{\left/ {\vphantom {{ - {\left( {\Sigma I_{{{\text{Ca}},j,i}} } \right)}} {{\left( {{\text{d}}_{i} F} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {{\text{d}}_{i} F} \right)}} - U_{i} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{i} - {\left[ {{\text{Ca}}^{{2 + }} } \right]}_{r} } \right)}} \right)} $$

Subscript “j” represents the L- or N-type Ca2+ current in the compartment.

3.2 Calcium dynamics in the BK channel subdomains

$$ {{\text{d}}{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{BK}},i}} } \mathord{\left/ {\vphantom {{{\text{d}}{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{BK}},i}} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t} = 2f_{{{\text{Ca}},{\text{BK}}}} {\left( {{ - I_{{{\text{Ca}},N,j}} } \mathord{\left/ {\vphantom {{ - I_{{{\text{Ca}},N,j}} } {{\left( {r{\text{d}}_{i} F} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {r{\text{d}}_{i} F} \right)}} - K_{{{\text{BK}},i}} {\left( {{\left[ {{\text{Ca}}^{{2 + }} } \right]}_{{{\text{BK}},i}} - {\left[ {{\text{Ca}}^{{2 + }} } \right]}_{r} } \right)}} \right)}, $$

Here, “i” can be either “s” (soma) or “pd” (primary dendrite).

Intercompartmental coupling currents

$$ \begin{array}{*{20}c} {I_{{{\text{sd - pd}}}} = g_{{{\text{sd - pd}}}} {\left( {V_{{{\text{sd}}}} - V_{{{\text{pd}}}} } \right)};\;I_{{{\text{pd - sd}}}} = g_{{{\text{pd}}}} {\left( {V_{{{\text{pd}}}} - V_{{{\text{sd}}}} } \right)};\;I_{{{\text{pd - s}}}} = g_{{{\text{pd - s}}}} {\left( {V_{{{\text{pd}}}} - V_{{\text{s}}} } \right)};} \\ {I_{{{\text{s - pd}}}} = g_{{{\text{s - pd}}}} {\left( {V_{{\text{s}}} - V_{{{\text{pd}}}} } \right)};} \\ {G_{{{\text{s - pd}}}} = {10^{2} \pi d^{2}_{{{\text{pd}}}} d^{2}_{{\text{s}}} } \mathord{\left/ {\vphantom {{10^{2} \pi d^{2}_{{{\text{pd}}}} d^{2}_{{\text{s}}} } {2\;Ra{\left( {L_{{{\text{pd}}}} {\text{d}}^{2}_{{\text{s}}} + L_{{\text{s}}} {\text{d}}^{2}_{{{\text{pd}}}} } \right)}}}} \right. \kern-\nulldelimiterspace} {2\;Ra{\left( {L_{{{\text{pd}}}} {\text{d}}^{2}_{{\text{s}}} + L_{{\text{s}}} {\text{d}}^{2}_{{{\text{pd}}}} } \right)}};} \\ {G_{{{\text{pd - sd}}}} = {10^{2} \pi {\text{d}}^{2}_{{{\text{pd}}}} {\text{d}}^{2}_{{{\text{sd}}}} } \mathord{\left/ {\vphantom {{10^{2} \pi {\text{d}}^{2}_{{{\text{pd}}}} {\text{d}}^{2}_{{{\text{sd}}}} } {2\;Ra{\left( {L_{{{\text{pd}}}} {\text{d}}^{2}_{{{\text{sd}}}} + L_{{{\text{sd}}}} {\text{d}}^{2}_{{{\text{pd}}}} } \right)}}}} \right. \kern-\nulldelimiterspace} {2\;Ra{\left( {L_{{{\text{pd}}}} {\text{d}}^{2}_{{{\text{sd}}}} + L_{{{\text{sd}}}} {\text{d}}^{2}_{{{\text{pd}}}} } \right)}};} \\ {g_{{{\text{s - pd}}}} = 2 \cdot {10^{8} \;G_{{{\text{s - pd}}}} } \mathord{\left/ {\vphantom {{10^{8} \;G_{{{\text{s - pd}}}} } {{\left( {\pi {\text{d}}_{{\text{s}}} L_{{\text{s}}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {\pi {\text{d}}_{{\text{s}}} L_{{\text{s}}} } \right)}};\;g_{{{\text{pd - s}}}} = {10^{8} \;G_{{{\text{s - pd}}}} } \mathord{\left/ {\vphantom {{10^{8} \;G_{{{\text{s - pd}}}} } {{\left( {\pi {\text{d}}_{{{\text{pd}}}} L_{{{\text{pd}}}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {\pi {\text{d}}_{{{\text{pd}}}} L_{{{\text{pd}}}} } \right)}};} \\ {g_{{{\text{pd - sd}}}} = 4 \cdot {10^{8} \;G_{{{\text{pd - sd}}}} } \mathord{\left/ {\vphantom {{10^{8} \;G_{{{\text{pd - sd}}}} } {{\left( {\pi {\text{d}}_{{{\text{pd}}}} L_{{{\text{pd}}}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {\pi {\text{d}}_{{{\text{pd}}}} L_{{{\text{pd}}}} } \right)}};\;g_{{{\text{sd - pd}}}} = {10^{8} \;G_{{{\text{pd - sd}}}} } \mathord{\left/ {\vphantom {{10^{8} \;G_{{{\text{pd - sd}}}} } {{\left( {\pi {\text{d}}_{{{\text{sd}}}} L_{{{\text{sd}}}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {\pi {\text{d}}_{{{\text{sd}}}} L_{{{\text{sd}}}} } \right)}}.} \\ \end{array} $$

Applied current: I stim = I ST/(πds L s).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komendantov, A.O., Trayanova, N.A. & Tasker, J.G. Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: A multicompartmental model study. J Comput Neurosci 23, 143–168 (2007). https://doi.org/10.1007/s10827-007-0024-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0024-z

Keywords

Navigation