Skip to main content
Log in

Dynamics of outgrowth in a continuum model of neurite elongation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Neurite outgrowth (dendrites and axons) should be a stable, but easily regulated process to enable a neuron to make its appropriate network connections during development. We explore the dynamics of outgrowth in a mathematical continuum model of neurite elongation. The model describes the construction of the internal microtubule cytoskeleton, which results from the production and transport of tubulin dimers and their assembly into microtubules at the growing neurite tip. Tubulin is assumed to be largely synthesised in the cell body from where it is transported by active mechanisms and by diffusion along the neurite. It is argued that this construction process is a fundamental limiting factor in neurite elongation. In the model, elongation is highly stable when tubulin transport is dominated by either active transport or diffusion, but oscillations in length may occur when both active transport and diffusion contribute. Autoregulation of tubulin production can eliminate these oscillations. In all cases a stable steady-state length is reached, provided there is intrinsic decay of tubulin. Small changes in growth parameters, such as the tubulin production rate, can lead to large changes in length. Thus cytoskeleton construction can be both stable and easily regulated, as seems necessary for neurite outgrowth during nervous system development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acebes A, Ferrus A (2000) Cellular and molecular features of axon collaterals and dendrites. Trends Neurosci. 23: 557–565.

    Article  CAS  PubMed  Google Scholar 

  • Aeschlimann M (2000) Biophysical models of axonal pathfinding. PHd thesis, Faculty of Science, University of Lausanne, Switzerland.

  • Alvarez J, Giuditta A, Koenig E (2000) Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phe-notype; with a critique of slow transport theory. Progress Neurobiol. 62: 1–62.

    Article  CAS  Google Scholar 

  • Ascoli G (2002) Neuroanatomical algorithms for dendritic modelling. Network 13: 247–260.

    PubMed  Google Scholar 

  • Baas P, Buster D (2004) Slow axonal transport and the genesis of neu-ronal morphology. J. Neurobiol. 58: 3–17.

    Article  CAS  PubMed  Google Scholar 

  • Barlow S, Gonzalez-Garay M, Cabral F (2002) Paclitaxel-dependent mutants have severely reduced microtubule assembly and reduced tubulin synthesis. J. Cell Sci. 115: 3469–3478.

    CAS  PubMed  Google Scholar 

  • Bray D (1973) Branching patterns of individual sympathetic neurons in culture. J. Cell Biol. 56: 702–712.

    Article  CAS  PubMed  Google Scholar 

  • Bray D (1979) Mechanical tension produced by nerve cells in tissue culture. J. Cell Sci. 37: 391–410.

    CAS  PubMed  Google Scholar 

  • Bray D (1984) Axonal growth in response to experimentally applied mechanical tension. Develop. Biol. 102: 379–389.

    Article  CAS  PubMed  Google Scholar 

  • Buxbaum R, Heidemann S (1992) An absolute rate theory model for tension control of axonal elongation. J. Theor. Biol. 155: 409–426.

    CAS  PubMed  Google Scholar 

  • Chada S, Lamoureux P, Buxbaum R, Heidemann S (1997) Cytome-chanics of neurite outgrowth from chick brain neurons. J. Cell Sci. 110: 1179–1186.

    CAS  PubMed  Google Scholar 

  • Cleveland D, Lopata M, Sherline P, Kirschner M (1981) Unpolymer-ized tubulin modulates the level of tubulin mRNAs. Cell 25: 537–546.

    Article  CAS  PubMed  Google Scholar 

  • Cline H (2001) Dendritic arbor development and synaptogenesis. Current Opinion Neurobiol. 11: 118–126.

    Article  CAS  Google Scholar 

  • Galbraith J, Reese T, Schlief M, Gallant P (1999) Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proceed. National Acad. Sci. 96: 11589–11594.

    Article  CAS  Google Scholar 

  • Graham B, van Ooyen A (2004) Transport limited effects in a model of dendritic branching. J. Theor. Biol. 230: 421–432.

    Article  PubMed  Google Scholar 

  • Heidemann S (1996) Cytoplasmic mechanisms of axonal and dendritic growth in neurons. Int. Rev. Cytol. 165: 235–296.

    Article  CAS  PubMed  Google Scholar 

  • Heidemann S, Buxbaum R (1994) Mechanical tension as a regulator of axonal development. Neurotoxicology 15: 95–107.

    CAS  PubMed  Google Scholar 

  • Heidemann S, Wirtz D (2004) Towards a regional approach to cell mechanics. Trends Cell Biol. 14: 160–166.

    Article  CAS  PubMed  Google Scholar 

  • Hely T, Graham B, van Ooyen A (2001) A computational model of dendrite elongation and branching based on MAP2 phosphorylation. J. Theor. Biol. 210: 375–384.

    Article  CAS  PubMed  Google Scholar 

  • Ireland W, Heidel J, Uemura E (1985) A mathematical model for the growth of dendritic trees. Neurosci. Lett. 54: 243–249.

    CAS  PubMed  Google Scholar 

  • Kiddie G, McLean D, van Ooyen A, Graham B (2005) Biologically plausible models of neurite outgrowth. In: van Pelt J, Kamermans M, Levelt C, van Ooyen A, Ramakers G, Roelfsema P, eds. Development, dynamics and pathology of neuronal networks: from molecules to functional circuits, Progress in Brain Research, Elsevier, vol. 147, pp 67–80.

  • Kimura J, Arimura N, Fukata Y, Watanabe H, Iwamatsu A, Kaibuchi K (2005) Tubulin and CRMP-2 complex is transported via kinesin-1. J. Neurochem. 93: 1371–1382.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Mundel P (1998) A role of microtubules during the formation of cell processes in neuronal and non-neuronal cells. Cell Tissue Res. 291: 163–174.

    Article  CAS  PubMed  Google Scholar 

  • Lamoureux P, Buxbaum R, Heidemann S (1998) Axonal outgrowth of cultured neurons is not limited by growth cone competition. J. Cell Sci. 111: 3245–3252.

    CAS  PubMed  Google Scholar 

  • Li G-H, Qin C-D, Li M-H (1994) On the mechanisms of growth cone locomotion: modeling and computer simulation. J. Theor. Biol. 169: 355–362.

    Article  CAS  PubMed  Google Scholar 

  • Li G-H, Qin C-D, Wang L-W (1995) Computer model of growth cone behavior and neuronal morphogenesis. J. Theor. Biol. 174: 381–389.

    Article  Google Scholar 

  • Ma Y, Shakiryanova D, Vardya I, Popov S (2004) Quantitative analysis of microtubule transport in growing nerve processes. Curr. Biol. 14: 725–730.

    Article  CAS  PubMed  Google Scholar 

  • Maccioni R, Cambiazo V (1995) Role of microtubule-associated proteins in the control of microtubule assembly. Physiol. Rev. 75: 835–857.

    CAS  PubMed  Google Scholar 

  • McLean D, Graham B (2004) Mathematical formulation and analysis of a continuum model for tubulin-driven neurite elongation. Proceedings Royal Soc. London A 460: 2437–2456.

    Article  Google Scholar 

  • McLean D, Lauchlan K, Graham B (2005) On the existence of steady solutions in a moving boundary model of neurite morphogenesis with cellular autoregulation. WSEAS Transactions Biol Biomed. 2: 98–105.

    Google Scholar 

  • McLean D, van Ooyen A, Graham B (2004) Continuum model for tubulin-driven neurite elongation. Neurocomputing 58–60: 511–516.

    Article  Google Scholar 

  • Miller K, Samuels D (1997) The axon as a metabolic compartment: protein degradation, transport and maximum length of an axon. J. Theor. Biol. 186: 373–379.

    Article  CAS  PubMed  Google Scholar 

  • Mitchison T, Kirschner M (1984a) Dynamic instability of microtubule growth. Nature 312: 237–242.

    Article  CAS  PubMed  Google Scholar 

  • Mitchison T, Kirschner M (1984b) Microtubule assembly nucleated by isolated centrosomes. Nature 312: 232–237.

    Article  CAS  PubMed  Google Scholar 

  • Morrison E, Moncur P, Askham J (2002) EB1 identifies sites of microtubule polymerisation during neurite development. Molecular Brain Res. 98: 145–152.

    Article  CAS  Google Scholar 

  • Odde D (1997) Estimation of the diffusion-limited rate of microtubule assembly. Biophys. J. 73: 88–96.

    CAS  PubMed  Google Scholar 

  • Redmond L, Ghosh A (2001) The role of Notch and Rho GTPase signalling in the control of dendritic development. Curr. Opinion Neurobiol. 11: 111–117.

    Article  CAS  Google Scholar 

  • Sabry J, O’Connor T, Kirschner M (1995) Axonal transport of tubulin in Til pioneer neurons in situ. Neuron 14: 1247–1256.

    Article  CAS  PubMed  Google Scholar 

  • Samsonovich A, Ascoli G (2005) Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: a hidden Markov model. Hippocampus 15: 166–183.

    Article  PubMed  Google Scholar 

  • Sayas C, Avila J, Wandosell F (2002) Regulation of neuronal cytoskele-ton by lysophosphatidic acid: role of “gsk-3”. Biochimica et Biophysica Acta 1582: 144–153.

    CAS  PubMed  Google Scholar 

  • Shah J, Cleveland D (2002) Slow axonal transport: fast motors in the slow lane. Curr. Opinion Cell Biol. 14: 58–62.

    Article  CAS  PubMed  Google Scholar 

  • Shea T (1999) Selective stabilization of microtubules within the proximal region of developing axonal neurites. Brain Res. Bullet. 48: 255–261.

    Article  CAS  Google Scholar 

  • Smith D, Simmons R (2001) Models of motor-assisted transport of in-tracellular particles. Biophys. J. 80: 45–68.

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Funakoshi T, Hirokawa N (1995) Tubulin dynamics in neuronal axons of living zebrafish embryos. Neuron 14: 1257–1264.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka E, Kirschner M (1991) Microtubule behavior in the growth cones of living neurons during axon elongation. J. Cell Biol. 115: 345–363.

    Article  CAS  PubMed  Google Scholar 

  • Theodorakis N, Cleveland D (1992) Physical evidence for cotransla-tional regulation of beta-tubulin messenger-RNA degradation. Molecular Cellular Biol. 12: 791–799.

    CAS  Google Scholar 

  • van Ooyen A, Graham B, Ramakers G (2001) Competition for tubulin between growing neurites during development. Neurocomputing 38–40: 73–78.

    Article  Google Scholar 

  • van Ooyen A, van Pelt J (2002) Competition in neuronal morphogenesis and the development of nerve connections. In: Ascoli G, Ed, Computational Neuroanatomy: Principles and Methods. The Humana Press Inc., Totawa, NJ, pp 219–244.

    Google Scholar 

  • van Pelt J, Uylings H, (1999) Natural variability in the geometry of dendritic branching patterns. In: Poznanski R, ed, Modeling in the Neurosciences: From Ionic Channels to Neural Networks, Chapter 4, Harwood Academic, pp 79–108

  • van Veen M, van Pelt J (1992) A model for outgrowth of branching neurites. J. Theor. Biol. 159: 1–23.

    Google Scholar 

  • van Veen M, van Pelt J (1994) Neuritic growth rate described by modeling microtubule dynamics. Bullet. Mathemat. Biol., 56: 249–273.

    Article  CAS  Google Scholar 

  • Wang J, Yu W, Baas P, Black M (1996) Microtubule assembly in growing dendrites. J. Neurosci. 16: 6065–6078.

    CAS  PubMed  Google Scholar 

  • Whitford K, Dijkhuizen P, Polleux F, Ghosh A (2002) Molecular control of cortical dendrite development. Ann. Rev. Neurosci. 25: 127–149.

    Article  CAS  PubMed  Google Scholar 

  • Wong W, Wong R (2000) Rapid dendritic movements during synapse formation and rearrangement. Curr. Opinion Neurobiol. 10: 118–124.

    Article  CAS  Google Scholar 

  • Zhang L, Poo M (2001) Electrical activity and development of neural circuits. Nature Neurosci. 4: 1207–1214.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce P. Graham.

Additional information

Action Editor: Upinder Bhalla

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, B.P., Lauchlan, K. & Mclean, D.R. Dynamics of outgrowth in a continuum model of neurite elongation. J Comput Neurosci 20, 43–60 (2006). https://doi.org/10.1007/s10827-006-5330-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-5330-3

Keywords

Navigation