Skip to main content
Log in

Local Diameter Fully Constrains Dendritic Size in Basal but not Apical Trees of CA1 Pyramidal Neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Computational modeling of dendritic morphology is a powerful tool for quantitatively describing complex geometrical relationships, uncovering principles of dendritic development, and synthesizing virtual neurons to systematically investigate cellular biophysics and network dynamics. A feature common to many morphological models is a dependence of the branching probability on local diameter. Previous models of this type have been able to recreate a wide variety of dendritic morphologies. However, these diameter-dependent models have so far failed to properly constrain branching when applied to hippocampal CA1 pyramidal cells, leading to explosive growth. Here we present a simple modification of this basic approach, in which all parameter sampling, not just bifurcation probability, depends on branch diameter. This added constraint prevents explosive growth in both apical and basal trees of simulated CA1 neurons, yielding arborizations with average numbers and patterns of bifurcations extremely close to those observed in real cells. However, simulated apical trees are much more varied in size than the corresponding real dendrites. We show that, in this model, the excessive variability of simulated trees is a direct consequence of the natural variability of diameter changes at and between bifurcations observed in apical, but not basal, dendrites. Conversely, some aspects of branch distribution were better matched by virtual apical trees than by virtual basal trees. Dendritic morphometrics related to spatial position, such as path distance from the soma or branch order, may be necessary to fully constrain CA1 apical tree size and basal branching pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ascoli GA (2002) Computing the brain and the computing brain. In: G Ascoli ed. Computational Neuroanatomy: Principles and Methods. Humana Press, Totowa, NJ, pp. 3–23.

    Google Scholar 

  • Ascoli GA, Krichmar JL (2000) L-Neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing 32–33: 1003–1011.

    Google Scholar 

  • Ascoli GA, Krichmar JL, Nasuto SJ, Senft SL (2001a) Generation, description and storage of dendritic morphology data. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356(1412): 1131– 1145.

    Article  Google Scholar 

  • Ascoli GA, Krichmar JL, Scorcioni R, Nasuto SJ, Senft SL (2001b) Computer generation and quantitative morphometric analysis of virtual neurons. Anat. Embryol. (Berl.) 204(4): 283–301.

    Article  Google Scholar 

  • Buckmaster PS, Alonso A, Canfield DR, Amaral DG (2004) Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. J. Comp. Neurol. 470(3): 317–329.

    Google Scholar 

  • Berezovska O, McLean P, Knowles R, Frosh M, Lu FM, Lux SE, Hyman BT (1999) Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 93(2): 433–439.

    Article  PubMed  Google Scholar 

  • Buettner HM (1995) Computer simulation of nerve growth cone filopodial dynamics for visualization and analysis. Cell. Motil. Cytoskeleton 32(3): 187–204.

    Article  PubMed  Google Scholar 

  • Buettner HM, Pittman RN, Ivins JK (1994) A model of neurite extension across regions of nonpermissive substrate: Simulations based on experimental measurement of growth cone motility and filopodial dynamics. Dev. Biol. 163(2): 407–422.

    Article  PubMed  Google Scholar 

  • Burke RE, Marks WB, Ulfhake B (1992) A parsimonious description of motoneuron dendritic morphology using computer simulation. J. Neurosci. 12(6): 2403–2416.

    PubMed  Google Scholar 

  • Cannon RC, Turner DA, Pyapali GK, Wheal HV (1998) An on-line archive of reconstructed hippocampal neurons. J. Neurosci. Methods 84(1/2): 49–54.

    Article  PubMed  Google Scholar 

  • Carriquiry AL, Ireland WP, Kliemann W, Uemura E (1991) Statistical evaluation of dendritic growth models. Bull. Math. Biol. 53(4): 579–589.

    Article  PubMed  Google Scholar 

  • Costa Lda F, Manoel ET (2003) A percolation approach to neural morphometry and connectivity. Neuroinformatics 1(1): 65–80.

    Article  PubMed  Google Scholar 

  • Dailey ME, Smith SJ (1996) The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16(9): 2983–2994.

    PubMed  Google Scholar 

  • Donohue DE, Scorcioni R, Ascoli GA (2002) Generation and description of neuronal morphology using L-Neuron: A case study. In: G Ascoli, ed. Computational Neuroanatomy: Principles and Methods. Humana Press, Totowa, NJ. pp. 49–70.

    Google Scholar 

  • Donohue DE, Scorcioni R, Ascoli GA (2003) Diameter dependent morphological models of hippocampal CA1 pyramidal cell dendrites. Poster 144.13 at The Society for Neuroscience 2003 Annual Meeting, New Orleans, LA.

  • Donohue DE, Ascoli GA (2005) Models of neuronal outgrowth. In: SH Koslow and S Subramaniam, ed. Databasing the Brain: From Data to Knowledge. Wiley Press, Hoboken, NJ. pp. 303–323.

    Google Scholar 

  • Fukushima N, Weiner JA, Kaushal D, Contos JJ, Rehen SK, Kingsbury MA, Kim KY, Chun J (2002) Lysophosphatidic acid influences the morphology and motility of young, postmitotic cortical neurons. Mol. Cell. Neurosci. 20(2): 271–282.

    Article  PubMed  Google Scholar 

  • Gao FB, Brenman JE, Jan LY, Jan YN (1999) Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes. Dev. 13(19): 2549–2561.

    Article  PubMed  Google Scholar 

  • Goodhill GJ, Urbach JS (1999) Theoretical analysis of gradient detection by growth cones. J. Neurobiol. 41(2): 230–241.

    Article  PubMed  Google Scholar 

  • Häusser M, Mel B (2003) Dendrites: Bug or feature? Curr. Opin. Neurobiol. 13(3): 372–383.

    Article  Google Scholar 

  • Hely TA, Graham B, van Ooyen A (2001) A computational model of dendrite elongation and branching based on MAP2 phosphorylation. J. Theor. Biol. 210(3): 375–384.

    Article  PubMed  Google Scholar 

  • Hillman DE (1979) Neuronal shape parameters and substructures as a basis of neuronal form. In: F Schmitt, ed. The Neurosciences, Fourth Study Program. MIT Press, Cambridge, MA. pp. 477–498.

    Google Scholar 

  • Ireland W, Heidel J, Uemura E (1985) A mathematical model for the growth of dendritic trees. Neurosci. Lett. 54(2/3): 243–249.

    PubMed  Google Scholar 

  • Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J. Comp. Neurol. 362(1): 17–45.

    Article  PubMed  Google Scholar 

  • Kliemann W (1987) A stochastic dynamical model for the characterization of the geometrical structure of dendritic processes. Bull. Math. Biol. 49(2): 135–152.

    Article  PubMed  Google Scholar 

  • Koch C, Segev I (2000) The role of single neurons in information processing. Nat. Neurosci. 3(Suppl): 1171–1177.

    Article  PubMed  Google Scholar 

  • Kryl D, Yacoubian T, Haapasalo A, Castren E, Lo D, Barker PA (1999) Subcellular localization of full-length and truncated Trk receptor isoforms in polarized neurons and epithelial cells. J. Neurosci. 19(14): 5823–5833.

    PubMed  Google Scholar 

  • Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu. Rev. Cell. Dev. Biol. 18: 601–635.

    Article  PubMed  Google Scholar 

  • Mainen ZF, Carnevale NT, Zador AM, Claiborne BJ, Brown TH (1996) Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions. J. Neurophysiol. 76(3): 1904–1923.

    PubMed  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589): 363–366.

    Article  PubMed  Google Scholar 

  • Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102(3): 527–540.

    Article  PubMed  Google Scholar 

  • Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J. Comp. Neurol. 471(3): 241–276.

    Article  PubMed  Google Scholar 

  • Pyapali GK, Sik A, Penttonen M, Buzsaki G, Turner DA (1998) Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: Intracellular staining in vivo and in vitro. J. Comp. Neurol. 391(3): 335–352.

    Article  PubMed  Google Scholar 

  • Rall W, Burke RE, Holmes WR, Jack JJB, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol. Revs. 72: S159–S186.

    Google Scholar 

  • Redmond L, Ghosh A (2002) The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr. Opin. Neurobiol. 11(1): 111–117.

    Article  Google Scholar 

  • Samsonovich AV, Ascoli GA (2003) Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. J. Neurosci. Res. 71(2): 173–187.

    Article  PubMed  Google Scholar 

  • Samsonovich AV, Ascoli GA (2005) Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden Markov model. Hippocampus 15(2): 166–183.

    Article  PubMed  Google Scholar 

  • Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J. Neurophysiol 89(6): 3143–3154.

    PubMed  Google Scholar 

  • Scorcioni R, Ascoli, GA (2001) Algorithmic extraction of morphological statistics form electronic archives of neuroanatomy. Lect. Notes Comp. Sci. 2084: 30–37.

    Google Scholar 

  • Scorcioni R, Lazarewicz MT, Ascoli GA (2004) Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories. J. Comp. Neurol. 473(2): 177–193.

    Article  PubMed  Google Scholar 

  • Stepanyants A, Tamas G, Chklovskii DB (2004) Class-specific features of neuronal wiring. Neuron 43(2): 251–259.

    Article  PubMed  Google Scholar 

  • Szilagyi T, De Schutter E (2004) Effects of variability in anatomical reconstruction techniques on models of synaptic integration by dendrites: A comparison of three Internet archives. Eur. J. Neurosci. 19(5): 1257–1266.

    Article  PubMed  Google Scholar 

  • Tang BL (2003) Inhibitors of neuronal regeneration: Mediators and signaling mechanisms. Neurochem. Int. 42(3): 189–203.

    Article  PubMed  Google Scholar 

  • Uemura E, Carriquiry A, Kliemann W, Goodwin J (1995) Mathematical modeling of dendritic growth in vitro. Brain. Res. 671(2): 187–194.

    Article  PubMed  Google Scholar 

  • van Pelt J, Dityatev AE, Uylings HB (1997) Natural variability in the number of dendritic segments: Model-based inferences about branching during neurite outgrowth. J. Comp. Neurol. 387(3): 325–340.

    Article  PubMed  Google Scholar 

  • van Veen MP, van Pelt J (1994a) Dynamic mechanisms of neuronal outgrowth. Prog. Brain. Res. 102: 95–108.

    Google Scholar 

  • van Veen MP, van Pelt J (1994b) Neuritic growth rate described by modeling microtubule dynamics. Bull. Math. Biol. 56(2): 249–273.

    Article  Google Scholar 

  • Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J. Neurophysiol. 85(2): 926–937.

    PubMed  Google Scholar 

  • Whitford KL, Dijkhuizen P, Polleux F, Ghosh A (2002) Molecular control of cortical dendrite development. Annu. Rev. Neurosci. 25: 127–149.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio A. Ascoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donohue, D.E., Ascoli, G.A. Local Diameter Fully Constrains Dendritic Size in Basal but not Apical Trees of CA1 Pyramidal Neurons. J Comput Neurosci 19, 223–238 (2005). https://doi.org/10.1007/s10827-005-1850-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-005-1850-5

Keywords

Navigation