Skip to main content
Log in

Feedback Inhibition and Throughput Properties of an Integrate-and-Fire-or-Burst Network Model of Retinogeniculate Transmission

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Computational modeling has played an important role in the dissection of the biophysical basis of rhythmic oscillations in thalamus that are associated with sleep and certain forms of epilepsy. In contrast, the dynamic filter properties of thalamic relay nuclei during states of arousal are not well understood. Here we present a modeling and simulation study of the throughput properties of the visually driven dorsal lateral geniculate nucleus (dLGN) in the presence of feedback inhibition from the perigeniculate nucleus (PGN). We employ thalamocortical (TC) and thalamic reticular (RE) versions of a minimal integrate-and-fire-or-burst type model and a one-dimensional, two-layered network architecture. Potassium leakage conductances control the neuromodulatory state of the network and eliminate rhythmic bursting in the presence of spontaneous input (i.e., wake up the network). The aroused dLGN/PGN network model is subsequently stimulated by spatially homogeneous spontaneous retinal input or spatio-temporally patterned input consistent with the activity of X-type retinal ganglion cells during full-field or drifting grating visual stimulation. The throughput properties of this visually-driven dLGN/PGN network model are characterized and quantified as a function of stimulus parameters such as contrast, temporal frequency, and spatial frequency. During low-frequency oscillatory full-field stimulation, feedback inhibition from RE neurons often leads to TC neuron burst responses, while at high frequency tonic responses dominate. Depending on the average rate of stimulation, contrast level, and temporal frequency of modulation, the TC and RE cell bursts may or may not be phase-locked to the visual stimulus. During drifting-grating stimulation, phase-locked bursts often occur for sufficiently high contrast so long as the spatial period of the grating is not small compared to the synaptic footprint length, i.e., the spatial scale of the network connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babadi B (2005) Bursting as an effective relay mode in a minimal thalamic model. J. Comput. Neurosci. 18(2): 229–243.

    Article  PubMed  Google Scholar 

  • Bloomfield SA, Sherman SM (1989) Dendritic current flow in relay cells and interneurons of the cat’s lateral geniculate nucleus. Proc. Nat. Acad. Sci. 86: 3911–3914.

    PubMed  Google Scholar 

  • Cai D, DeAngelis GC, Freeman RD (1997) Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J. Neurophysiol. 78(2): 1045–1061.

    PubMed  Google Scholar 

  • Casti AR, Omurtag A, Sornborger A, Kaplan E, Knight B, Victor J, Sirovich L (2002) A population study of integrate-and-fire-or-burst neurons. Neural. Comput. 14(5): 957–986.

    Article  PubMed  Google Scholar 

  • Coombes S (2003) Dynamics of synaptically coupled integrate-and-fire-or-burst neurons. Physical Rev. E. 67(041910).

  • Coombes S, Owen MR, Smith GD (2001) Mode-locking in a periodically forced integrate-and-fire-or-burst neuron model. Phys. Rev. E. 64(041914): 1–12.

    Article  Google Scholar 

  • Cox CL, Reichova I, Sherman SM (2003) Functional synaptic contacts by intranuclear axon collaterals of thalamic relay neurons. J. Neurosci. 23(20): 7642–7646.

    PubMed  Google Scholar 

  • Dawis S, Shapley R, Kaplan E, Tranchina D (1984) The receptive field organization of X-cells in the cat: Spatiotemporal coupling and asymmetry. Vision Res. 24(6): 549–564.

    Article  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge, MA.

    Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive field dynamics in the central visual pathways. Trends in Neurosci. 18(10): 451–458.

    Article  Google Scholar 

  • Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J. Neurophysiol. 76(3): 2049–2070.

    PubMed  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1998a) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J. Neurophysiol. 79(2): 999–1016.

    Google Scholar 

  • Destexhe A, Mainen Z, Sejnowski T (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Computat. Neurosci. 1: 195–230.

    Article  Google Scholar 

  • Destexhe A, Neubig M, Ulrich D, Huguenard J (1998b) Dendritic low-threshold calcium currents in thalamic relay cells. Neuroscience. 18(10): 3574–3588.

    Google Scholar 

  • Destexhe A, Sejnowski TJ (2001) Thalamocortical assemblies. Oxford University Press, Oxford.

    Google Scholar 

  • Gabbiani F, Koch C (1998) Principles of spike train analysis. MIT Press, Cambridge, MA, second edn., pp. 313–360.

    Google Scholar 

  • Golomb D, Wang XJ, Rinzel J (1994) Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. J. Neurophysiol. 72(3): 1109–1126.

    PubMed  Google Scholar 

  • Golomb D, Wang XJ, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J. Neurophysiol. 72(2): 750– 769.

    Google Scholar 

  • Guido W, Lu SM, Vaughan JW, Godwin DW, Sherman SM (1995) Receiver operating characteristic (ROC) analysis of neurons in the cat’s lateral geniculate nucleus during tonic and burst response mode. Vis. Neurosci. 12: 723–741.

    PubMed  Google Scholar 

  • Huertas MA, Groff JR, Smith GD (2004) The effect of feedback inhibition on throughput properties of the dorsal lateral geniculate nucleus. In: Proceedings of the 2004 Computational Neuroscience Annual Meeting, Special supplement to Neurocomputing.

  • Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68(4): 1373–1383.

    PubMed  Google Scholar 

  • Kaplan E, Mukherjee P, Shapley RM (1993) Information filtering in the lateral geniculate nucleus. In: R Shapley and D Lam, eds., Contrast Sensitivity The Cambridge, Massachusetts. MIT Press 5: 183–200.

  • Kaplan E, Purpura K, Shapley RM (1987) Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J. Physiol. (London) 391: 267– 288.

    Google Scholar 

  • Krinskii VI, Kokoz IuM (1973) Analysis of the equations of excitable membranes. i. reduction of the hodgkins-huxley equations to a 2d order system. Biofizika 18(3): 506–511.

    PubMed  Google Scholar 

  • Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J. Neurophysiol. 77(4): 1679–1696.

    PubMed  Google Scholar 

  • McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobio. 39: 337–388.

    Article  Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: Thalamocortical mechanisms. Ann. Rev. Neurosci. 20: 185– 215.

    Article  PubMed  Google Scholar 

  • McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68(4): 1384–1400.

    PubMed  Google Scholar 

  • Mukherjee P, Kaplan E (1998) The maintained discharge of neurons in the cat lateral geniculate nucleus: Spectral analysis and computational modeling. Vis. Neurosci. 15: 529–539.

    Article  PubMed  Google Scholar 

  • Nykamp DQ, Tranchina D (2000) A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning. J. Comput. Neurosci. 8(1): 19–50.

    Article  PubMed  Google Scholar 

  • Omurtag A, Knight BW, Sirovich L (2000) On the simulation of large populations of neurons. J. Comput. Neurosci. 8(1): 51– 63.

    Article  PubMed  Google Scholar 

  • Pape HC, McCormick DA (1995) Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. Neuroscience 68(4): 1105–1125.

    Article  PubMed  Google Scholar 

  • Ramcharan EJ, Cox CL, Zhan XJ, Sherman SM, Gnadt JW (2000) Cellular mechanisms underlying activity patterns in the monkey thalamus during visual behavior. J. Neurophysiol. 84(4): 1982–1987.

    PubMed  Google Scholar 

  • Ramcharan EJ, Gnadt JW, Sherman SM (2000) Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Visual Neuroscience. 17: 55–62.

    Article  PubMed  Google Scholar 

  • Rinzel J (1985) Excitation dynamics: Insights from simplified membrane models. Fed. Proc. 44(15): 2944–2946.

    PubMed  Google Scholar 

  • Rinzel J, Terman D, Wang XJ, Ermentrout B (1998) Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279(5355): 1351–1355.

    Article  PubMed  Google Scholar 

  • Rodieck RW, Brening RK (1983) Retinal ganglion cells: Properties, types, genera, pathways and trans-species comparisons. Brain Behav. Evol. 23(3–4): 121–164.

    PubMed  Google Scholar 

  • Rush ME, Rinzel J (1994) Analysis of bursting in a thalamic neuron model. Biol. Cybern. 71(4): 281–291.

    Article  PubMed  Google Scholar 

  • Sanchez-Vives MV, Bal T, McCormick DA (1997) Inhibitory interactions between perigenicualte gabaergic neurons. J. Neurosci. 17(22): 8894–8908.

    PubMed  Google Scholar 

  • Shapley RM, Lennie P (1985) Spatial frequency analysis in the visual system. Ann. Rev. Neurosci. 8: 547–583.

    Article  PubMed  Google Scholar 

  • Sherman SM (1996) Dual response modes in lateral geniculate neurons: Mechanisms and functions. Vis. Neurosci. 13: 205– 213.

    PubMed  Google Scholar 

  • Sherman SM, Guillery RW (1996) The functional organization of thalamocortical relays. J Neurophysiol. 76: 1367–1395.

    PubMed  Google Scholar 

  • Sherman SM, Koch C (1990) Thalamus GM Shepherd, (ed.) In: Synaptic Organization of the Brain, Third Edition, pp. 246–278, New York. Oxford University Press.

    Google Scholar 

  • Sherman SM, Koch C (1986) The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp. Brain. Res. 63: 1–20.

    Article  PubMed  Google Scholar 

  • Smith GD, Cox CL, Sherman SM, Rinzel J (2000) Fourier analysis of sinusoidally-driven thalamocortical relay neurons and a minimal intergrate-and-fire-or-burst model. J. Neurophysiol. 83(1): 588.

    Google Scholar 

  • Smith GD, Cox CL, Sherman SM, Rinzel J (2001) Spike-frequency adaptation in sinusoidally-driven thalamocortical relay neurons. Thalamus and Related Systems. 11: 1–22.

    Google Scholar 

  • Smith GD, Huertas MA, Groff JR (2003) The effect of feedback inhibition in network simulations of retinogeniculate transmission. In Annual Meeting of the Society for Neuroscience, Program no. 68.12.

  • Troy JB, Robson JG (1992) Steady discharges of X and Y retinal ganglion cells of cat under photopic illuminance. Vis. Neurosci. 9: 535–553.

    PubMed  Google Scholar 

  • Van Horn SC, Erisir A, Sherman SM (2000) Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J. Comp. Neurol. 416(4): 509–520.

    Article  PubMed  Google Scholar 

  • von Krosigk M, Bal T, (1993) McCormick DA Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261(5119): 361–364.

    PubMed  Google Scholar 

  • Wang XJ, Golomb D, Rinzel J (1995) Emergent spindle oscillations and intermittent burst firing in a thalamic model: Specific neuronal mechanisms. Proc. Nat. Acad. Sci. 92(12): 5577–5581.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huertas, M.A., Groff, J.R. & Smith, G.D. Feedback Inhibition and Throughput Properties of an Integrate-and-Fire-or-Burst Network Model of Retinogeniculate Transmission. J Comput Neurosci 19, 147–180 (2005). https://doi.org/10.1007/s10827-005-1084-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-005-1084-6

Keywords

Navigation